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Preface

Suppose you sit down at your computer to check your email. One of the
messages includes an attached document, which you are to edit. You click
the attachment, and it opens up in another window. After you start edit-
ing the document, you realize you need to leave for a trip. You save the
document in its partially edited state and shut down the computer to save
energy while you are gone. Upon returning, you boot the computer back
up, open the document, and continue editing.

This scenario illustrates that computations interact. In fact, it demon-
strates at least three kinds of interactions between computations. In each
case, one computation provides data to another. First, your email program
retrieves new mail from the server, using the Internet to bridge space. Sec-
ond, your email program provides the attachment to the word processor,
using the operating system’s services to couple the two application pro-
grams. Third, the invocation of the word processor that is running before
your trip provides the partially edited document to the invocation running
after your return, using disk storage to bridge time.

In this book, you will learn about all three kinds of interaction. In all
three cases, interesting software techniques are needed in order to bring the
computations into contact, yet keep them sufficiently at arm’s length that
they don’t compromise each other’s reliability. The exciting challenge, then,
is supporting controlled interaction. This includes support for computations
that share a single computer and interact with one another, as your email
and word processing programs do. It also includes support for data storage
and network communication. This book describes how all these kinds of
support are provided both by operating systems and by additional software
layered on top of operating systems, which is known as middleware.

xi
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Audience

If you are an upper-level computer science student who wants to under-
stand how contemporary operating systems and middleware products work
and why they work that way, this book is for you. In this book, you will
find many forms of balance. The high-level application programmer’s view,
focused on the services that system software provides, is balanced with a
lower-level perspective, focused on the mechanisms used to provide those
services. Timeless concepts are balanced with concrete examples of how
those concepts are embodied in a range of currently popular systems. Pro-
gramming is balanced with other intellectual activities, such as the scientific
measurement of system performance and the strategic consideration of sys-
tem security in its human and business context. Even the programming
languages used for examples are balanced, with some examples in Java and
others in C or C++. (Only limited portions of these languages are used,
however, so that the examples can serve as learning opportunities, not stum-
bling blocks.)

Systems Used as Examples

Most of the examples throughout the book are drawn from the two dominant
families of operating systems: Microsoft Windows and the UNIX family,
including especially Linux and Mac OS X. Using this range of systems pro-
motes the students’ flexibility. It also allows a more comprehensive array of
concepts to be concretely illustrated, as the systems embody fundamentally
different approaches to some problems, such as the scheduling of processors’
time and the tracking of files’ disk space.

Most of the examples are drawn from the stable core portions of the
operating systems and, as such, are equally applicable to a range of spe-
cific versions. Whenever Microsoft Windows is mentioned without further
specification, the material should apply to Windows NT, Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, Windows 2008, and
Windows 7. All Linux examples are from version 2.6, though much of the
material applies to other versions as well. Wherever actual Linux source
code is shown (or whenever fine details matter for other reasons), the spe-
cific subversion of 2.6 is mentioned in the end-of-chapter notes. Most of the
Mac OS X examples originated with version 10.4, also known as Tiger, but
should be applicable to other versions.

Where the book discusses the protection of each process’s memory, one



PREFACE xiii

additional operating system is brought into the mix of examples, in order
to illustrate a more comprehensive range of alternative designs. The IBM
iSeries, formerly known as the AS/400, embodies an interesting approach
to protection that might see wider application within current students’ life-
times. Rather than giving each process its own address space (as Linux,
Windows, and Mac OS X do), the iSeries allows all processes to share a
single address space and to hold varying access permissions to individual
objects within that space.

Several middleware systems are used for examples as well. The Ora-
cle database system is used to illustrate deadlock detection and recovery
as well as the use of atomic transactions. Messaging systems appear both
as another application of atomic transactions and as an important form of
communication middleware, supporting distributed applications. The spe-
cific messaging examples are drawn from the IBM WebSphere MQ system
(formerly MQSeries) and the Java Message Service (JMS) interface, which is
part of Java 2 Enterprise Edition (J2EE). The other communication middle-
ware examples are Java RMI (Remote Method Invocation) and web services.
Web services are explained in platform-neutral terms using the SOAP and
WSDL standards, as well as through a J2EE interface, JAX-RPC (Java API
for XML-Based RPC).

Organization of the Text

Chapter [1] provides an overview of the text as a whole, explaining what an
operating system is, what middleware is, and what sorts of support these
systems provide for controlled interaction.

The next nine chapters work through the varieties of controlled interac-
tion that are exemplified by the scenario at the beginning of the preface: in-
teraction between concurrent computations on the same system (as between
your email program and your word processor), interaction across time (as
between your word processor before your trip and your word processor after
your trip), and interaction across space (as between your email program and
your service provider’s email server).

The first of these three topics is controlled interaction between computa-
tions operating at one time on a particular computer. Before such interaction
can make sense, you need to understand how it is that a single computer
can be running more than one program, such as an email program in one
window and a word processing program in another. Therefore, Chapter
explains the fundamental mechanism for dividing a computer’s attention
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between concurrent computations, known as threads. Chapter [3| continues
with the related topic of scheduling. That is, if the computer is dividing its
time between computations, it needs to decide which ones to work on at any
moment.

With concurrent computations explained, Chapter 4| introduces con-
trolled interactions between them by explaining synchronization, which is
control over the threads’ relative timing. For example, this chapter explains
how, when your email program sends a document to your word processor,
the word processor can be constrained to read the document only after the
email program writes it. One particularly important form of synchroniza-
tion, atomic transactions, is the topic of Chapter Atomic transactions
are groups of operations that take place as an indivisible unit; they are
most commonly supported by middleware, though they are also playing an
increasing role in operating systems.

Other than synchronization, the main way that operating systems con-
trol the interaction between computations is by controlling their access to
memory. Chapter [6] explains how this is achieved using the technique known
as virtual memory. That chapter also explains the many other objectives
this same technique can serve. Virtual memory serves as the foundation for
Chapter [7s topic, which is processes. A process is the fundamental unit of
computation for protected access, just as a thread is the fundamental unit
of computation for concurrency. A process is a group of threads that share a
protection environment; in particular, they share the same access to virtual
memory.

The next three chapters move outside the limitations of a single com-
puter operating in a single session. First, consider the document stored
before a trip and available again after it. Chapter [§| explains persistent
storage mechanisms, focusing particularly on the file storage that operat-
ing systems provide. Second, consider the interaction between your email
program and your service provider’s email server. Chapter [9] provides an
overview of networking, including the services that operating systems make
available to programs such as the email client and server. Chapter [I0] ex-
tends this discussion into the more sophisticated forms of support provided
by communication middleware, such as messaging systems, RMI, and web
services.

Finally, Chapter [L1] focuses on security. Because security is a pervasive
issue, the preceding ten chapters all provide some information on it as well.
Specifically, the final section of each chapter points out ways in which se-
curity relates to that chapter’s particular topic. However, even with that
coverage distributed throughout the book, a chapter specifically on security
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is needed, primarily to elevate it out of technical particulars and talk about
general principles and the human and organizational context surrounding
the computer technology.

The best way to use these chapters is in consecutive order. However,
Chapter [5] can be omitted with only minor harm to Chapters [8| and [10 and
Chapter [9] can be omitted if students are already sufficiently familiar with
networking.

Relationship to Computer Science Curriculum 2008

Operating systems are traditionally the subject of a course required for all
computer science majors. In recent years, however, there has been increasing
interest in the idea that upper-level courses should be centered less around
particular artifacts, such as operating systems, and more around cross-
cutting concepts. In particular, the Computing Curricula 2001 (CC2001)
and its interim revision, Computer Science Curriculum 2008 (CS2008), pro-
vide encouragement for this approach, at least as one option. Most colleges
and universities still retain a relatively traditional operating systems course,
however. Therefore, this book steers a middle course, moving in the direc-
tion of the cross-cutting concerns while retaining enough familiarity to be
broadly adoptable.

The following table indicates the placement within this text of knowledge
units from CS2008’s computer science body of knowledge. Those knowledge
units designated as core units within CS2008 are listed in italics. The book
covers all core operating systems (OS) units, as well as one elective OS unit.
The overall amount of coverage for each unit is always at least that rec-
ommended by CS2008, though sometimes the specific subtopics don’t quite
correspond exactly. Outside the OS area, this book’s most substantial cov-
erage is of Net-Centric Computing (NC); another major topic, transaction
processing, comes from Information Management (IM). In each row, the
listed chapters contain the bulk of the knowledge unit’s coverage, though
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some topics may be elsewhere.

Knowledge unit
(italic indicates core units in CS2008) Chapter(s)
0S/OverviewOfOperatingSystems
0S/OperatingSystemPrinciples
0S/Concurrency

0S/SchedulingAndDispatch
0S/MemoryManagement
0S/SecurityAndProtection

OS/FileSystems

NC/Introduction

NC/NetworkCommunication (partial coverage)
NC/NetworkSecurity (partial coverage)
NC/WebOrganization (partial coverage)
NC/Networked Applications (partial coverage)
IM/TransactionProcessing

N=lojofolofcof o eofof ==

Your Feedback is Welcome

Comments, suggestions, and bug reports are welcome; please send email to
max@gustavus.edu. Bug reports in particular can earn you a bounty of
$2.56 apiece as a token of gratitude. (The great computer scientist Donald
Knuth started this tradition. Given how close to bug-free his publications
have become, it seems to work.) For purposes of this reward, the definition
of a bug is simple: if as a result of your email the author chooses to make a
change, then you have pointed out a bug. The change need not be the one
you suggested, and the bug need not be technical in nature. Unclear writing
qualifies, for example.

Features of the Text

Each chapter concludes with five standard elements. The last numbered sec-
tion within the chapter is always devoted to security matters related to the
chapter’s topic. Next comes three different lists of opportunities for active
participation by the student: exercises, programming projects, and explo-
ration projects. Finally, the chapter ends with historical and bibliographic
notes.

The distinction between exercises, programming projects, and explo-
ration projects needs explanation. An exercise can be completed with no
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outside resources beyond paper and pencil: you need just this textbook and
your mind. That does not mean all the exercises are cut and dried, however.
Some may call upon you to think creatively; for these, no one answer is cor-
rect. Programming projects require a nontrivial amount of programming;
that is, they require more than making a small, easily identified change in
an existing program. However, a programming project may involve other
activities beyond programming. Several of them involve scientific measure-
ment of performance effects, for example; these exploratory aspects may
even dominate over the programming aspects. An exploration project, on
the other hand, can be an experiment that can be performed with no real
programming; at most you might change a designated line within an ex-
isting program. The category of exploration projects does not just include
experimental work, however. It also includes projects that require you to do
research on the Internet or using other library resources.

Supplemental Resources

The author of this text is making supplemental resources available on his own
web site. Additionally, the publisher of the earlier first edition commissioned
additional resources from independent supplement authors, which may still
be available through the publisher’s web site and would largely still apply
to this revised edition. The author’s web site, http: // gustavus.edu/ +mazx/
0s-book/\, contains at least the following materials:

e Full text of this revised edition

e Source code in Java, C, or C++ for all programs that are shown in
the text

e Artwork files for all figures in the text

e An errata list that will be updated on an ongoing basis

About the Revised Edition

Course Technology published the first edition of this book in January of 2006
and in October of 2010 assigned the copyright back to the author, giving
him the opportunity to make it freely available. This revised edition closely
follows the first edition; rather than being a thorough update, it is aimed at
three narrow goals:


http://gustavus.edu/+max/os-book/
http://gustavus.edu/+max/os-book/
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All errata reported in the first edition are corrected.

A variety of other minor improvements appear throughout, such as
clarified explanations and additional exercises, projects, and end-of-
chapter notes.

e Two focused areas received more substantial updates:

— The explanation of Linux’s scheduler was completely replaced
to correspond to the newer “Completely Fair Scheduler” (CFS),
including its group scheduling feature.

— A new section, was added on nonblocking synchronization.

In focusing on these limited goals, a key objective was to maintain as
much compatibility with the first edition as possible. Although page num-
bering changed, most other numbers stayed the same. All new exercises
and projects were added to the end of the corresponding lists for that rea-
son. The only newly added section, [4.9], is near the end of its chapter; thus,
the only changed section number is that the old Section 4.9 (“Security and
Synchronization”) became Only in Chapter |4 did any figure numbers
change.

It is my hope that others will join me in making further updates and im-
provements to the text. I am releasing it under a Creative Commons license
that allows not just free copying, but also the freedom to make modifications,
so long as the modified version is released under the same terms. In order to
such modifications practical, I'm not just releasing the book in PDF form,
but also as a collection of LaTeX source files that can be edited and then run
through the pdflatex program (along with bibtex and makeindex). The
source file collection also includes PDF files of all artwork figures; Course
Technology has released the rights to the artwork they contracted to have
redrawn.

If you produce a modified version of this text, the Creative Commons
license allows you considerable flexibility in how you make your modified ver-
sion available. I would urge you to send it back to me (max@gustavus.edu)
so that I can add your version to the main web site-we will all benefit from
having a central repository of progress. Separate materials to supplement
the text would also be welcome. One category that occurs to me is anima-
tions or screencasts; the static figures in the text are rather limited. Another
worthwhile project would be to transform the text into a more contribution-
friendly form, such as a wiki.



PREFACE xix

Acknowledgments

This book was made possible by financial and logistical support from my
employer, Gustavus Adolphus College, and moral support from my family.
I would like to acknowledge the contributions of the publishing team, espe-
cially developmental editor Jill Batistick and Product Manager Alyssa Pratt.
I am also grateful to my students for doing their own fair share of teaching.
I particularly appreciate the often extensive comments I received from the
following individuals, each of whom reviewed one or more chapters: Dan
Cosley, University of Minnesota, Twin Cities; Allen Downey, Franklin W.
Olin College of Engineering; Michael Goldweber, Xavier University; Ramesh
Karne, Towson University; G. Manimaran, Iowa State University; Alexander
Manov, Illinois Institute of Technology; Peter Reiher, University of Califor-
nia, Los Angeles; Rich Salz, DataPower Technology; Dave Schulz, Wisconsin
Lutheran College; Sanjeev Setia, George Mason University; and Jon Weiss-
man, University of Minnesota, Twin Cities. Although I did not adopt all
their suggestions, I did not ignore any of them, and I appreciate them all.

In preparing the revised edition, I took advantage of suggestions from
many readers. I would like to thank all of them, even those I've managed
to lose track of, to whom I also apologize. Those I can thank by name are
Joel Adams, Michael Brackney, Jack Briner, Justin Delegard, Ben Follis,
MinChan Kim, Finn Kuusisto, Matt Lindner, Milo Martin, Gabe Schmidt,
Fritz Sieker, and Alex Wauck.



XX

PREFACE



Chapter 1

Introduction

1.1 Chapter Overview

This book covers a lot of ground. In it, I will explain to you the basic
principles that underlie a broad range of systems and also give you concrete
examples of how those principles play out in several specific systems. You
will see not only some of the internal workings of low-level infrastructure,
but also how to build higher-level applications on top of that infrastructure
to make use of its services. Moreover, this book will draw on material you
may have encountered in other branches of computer science and engineer-
ing and engage you in activities ranging from mathematical proofs to the
experimental measurement of real-world performance and the consideration
of how systems are used and abused in social context.

Because the book as a whole covers so much ground, this chapter is
designed to give you a quick view of the whole terrain, so that you know
what you are getting into. This is especially important because several of
the topics I cover are interrelated, so that even though I carefully designed
the order of presentation, I am still going to confront you with occasional
forward references. You will find, however, that this introductory chapter
gives you a sufficient overview of all the topics so that you won’t be mystified
when a chapter on one makes some reference to another.

In Section I will explain what an operating system is, and in Sec-
tion I will do the same for middleware. After these two sections, you
will know what general topic you are studying. Section gives you some
reasons for studying that topic, by explaining several roles that I hope this
book will serve for you.

After the very broad overview provided by these initial sections, the
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remaining sections of this chapter are somewhat more focused. Each corre-
sponds to one or more of the later chapters and explains one important cat-
egory of service provided by operating systems and middleware. Section [L.5
explains how a single computer can run several computations concurrently,
a topic addressed in more depth by Chapters [2| and 3| Section explains
how interactions between those concurrent computations can be kept under
control, the topic of Chapters [ through Sections and extend
the range of interacting computations across time and space, respectively,
through mechanisms such as file systems and networking. They preview
Chapter [§ and Chapters [J] and [I0] Finally, Section [I.9] introduces the topic
of security, a topic I revisit at the end of each chapter and then focus on in

Chapter

1.2 What Is an Operating System?

An operating system is software that uses the hardware resources of a com-
puter system to provide support for the execution of other software. Specif-
ically, an operating system provides the following services:

e The operating system allows multiple computations to take place con-
currently on a single computer system. It divides the hardware’s time
between the computations and handles the shifts of focus between the
computations, keeping track of where each one leaves off so that it can
later correctly resume.

e The operating system controls the interactions between the concurrent
computations. It can enforce rules, such as forbidding computations
from modifying data structures while other computations are accessing
those structures. It can also provide isolated areas of memory for
private use by the different computations.

e The operating system can provide support for controlled interaction of
computations even when they do not run concurrently. In particular,
general-purpose operating systems provide file systems, which allow
computations to read data from files written by earlier computations.
This feature is optional because an embedded system, such as the
computer controlling a washing machine, might in some cases run an
operating system, but not provide a file system or other long-term
storage.
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e The operating system can provide support for controlled interaction
of computations spread among different computer systems by using
networking. This is another standard feature of general-purpose oper-
ating systems.

These services are illustrated in Figure

If you have programmed only general-purpose computers, such as PCs,
workstations, and servers, you have probably never encountered a computer
system that was not running an operating system or that did not allow mul-
tiple computations to be ongoing. For example, when you boot up your own
computer, chances are it runs Linux, Microsoft Windows, or Mac OS X and
that you can run multiple application programs in individual windows on
the display screen. These three operating systems will serve as my primary
examples throughout the book.

To illustrate that a computer can run a single program without an op-
erating system, consider embedded systems. A typical embedded system
might have neither keyboard nor display screen. Instead, it might have
temperature and pressure sensors and an output that controls the fuel in-
jectors of your car. Alternatively, it might have a primitive keyboard and
display, as on a microwave oven, but still be dedicated to running a single
program.

Some of the most sophisticated embedded systems run multiple cooper-
ating programs and use operating systems. However, more mundane embed-
ded systems take a simpler form. A single program is directly executed by
the embedded processor. That program contains instructions to read from
input sensors, carry out appropriate computations, and write to the output
devices. This sort of embedded system illustrates what is possible without
an operating system. It will also serve as a point of reference as I contrast
my definition of an operating system with an alternative definition.

One popular alternative definition of an operating system is that it pro-
vides application programmers with an abstract view of the underlying hard-
ware resources, taking care of the low-level details so that the applications
can be programmed more simply. For example, the programmer can write
a simple statement to output a string without concern for the details of
making each character appear on the display screen.

I would counter by remarking that abstraction can be provided with-
out an operating system, by linking application programs with separately
written libraries of supporting procedures. For example, a program could
output a string using the standard mechanism of a programming language,
such as C++ or Java. The application programmer would not need to know



4 CHAPTER 1. INTRODUCTION

networking
| Application | Application

Application | Operating System | | Operating System |
3 B 3

| Application |

L

=77 =77
G| S Ci—— |

(a) (b)

Figure 1.1: Without an operating system, a computer can directly execute
a single program, as shown in part (a). Part (b) shows that with an oper-
ating system, the computer can support concurrent computations, control
the interactions between them (suggested by the dashed line), and allow
communication across time and space by way of files and networking.

anything about hardware. However, rather than running on an operating
system, the program could be linked together with a library that performed
the output by appropriately manipulating a microwave oven’s display panel.
Once running on the oven’s embedded processor, the library and the appli-
cation code would be a single program, nothing more than a sequence of
instructions to directly execute. However, from the application program-
mer’s standpoint, the low-level details would have been successfully hidden.

To summarize this argument, a library of input/output routines is not
the same as an operating system, because it satisfies only the first part of
my definition. It does use underlying hardware to support the execution of
other software. However, it does not provide support for controlled inter-
action between computations. In fairness to the alternative viewpoint, it is
the more historically grounded one. Originally, a piece of software could be
called an operating system without supporting controlled interaction. How-
ever, the language has evolved such that my definition more closely reflects
current usage.

I should also address one other alternative view of operating systems,
because it is likely to be the view you have formed from your own experience
using general-purpose computers. You are likely to think of an operating
system as the software with which you interact in order to carry out tasks
such as running application programs. Depending on the user interface to
which you are accustomed, you might think the operating system is what
allows you to click program icons to run them, or you might think the
operating system is what interprets commands you type.
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There is an element of truth to this perception. The operating system
does provide the service of executing a selected application program. How-
ever, the operating system provides this service not to human users clicking
icons or typing commands, but to other programs already running on the
computer, including the one that handles icon clicks or command entries.
The operating system allows one program that is running to start another
program running. This is just one of the many services the operating system
provides to running programs. Another example service is writing output
into a file. The sum total of features the operating system makes available
for application programmers to use in their programs is called the Applica-
tion Programming Interface (API). One element of the API is the ability to
run other programs.

The reason why you can click a program icon or type in a command
to run a program is that general-purpose operating systems come bundled
with a user-interface program, which uses the operating system API to run
other programs in response to mouse or keyboard input. At a marketing
level, this user-interface program may be treated as a part of the operating
system; it may not be given a prominent name of its own and may not be
available for separate purchase.

For example, Microsoft Windows comes with a user interface known as
Explorer, which provides features such as the Start menu and the ability to
click icons. (This program is distinct from the similarly named web browser,
Internet Explorer.) However, even if you are an experienced Windows user,
you may never have heard of Explorer; Microsoft has chosen to give it a
very low profile, treating it as an integral part of the Microsoft Windows
environment. At a technical level, however, it is distinct from the operating
system proper. In order to make the distinction explicit, the true operating
system is often called the kernel. The kernel is the fundamental portion
of Microsoft Windows that provides an API supporting computations with
controlled interactions.

A similar distinction between the kernel and the user interface applies
to Linux. The Linux kernel provides the basic operating system services
through an API, whereas shells are the programs (such as bash and tcsh)
that interpret typed commands, and desktop environments are the programs,
such as KDE (K Desktop Environment) and GNOME, that handle graphical
interaction.

In this book, I will explain the workings of operating system kernels,
the true operating systems themselves, as opposed to the user-interface pro-
grams. One reason is because user-interface programs are not constructed
in any fundamentally different way than normal application programs. The
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other reason is because an operating system need not have this sort of user
interface at all. Consider again the case of an embedded system that con-
trols automotive fuel injection. If the system is sufficiently sophisticated,
it may include an operating system. The main control program may run
other, more specialized programs. However, there is no ability for the user
to start an arbitrary program running through a shell or desktop environ-
ment. In this book, I will draw my examples from general-purpose systems
with which you might be familiar, but will emphasize the principles that
could apply in other contexts as well.

1.3 What is Middleware?

Now that you know what an operating system is, I can turn to the other cat-
egory of software covered by this book: middleware. Middleware is software
occupying a middle position between application programs and operating
systems, as I will explain in this section.

Operating systems and middleware have much in common. Both are
software used to support other software, such as the application programs
you run. Both provide a similar range of services centered around con-
trolled interaction. Like an operating system, middleware may enforce rules
designed to keep the computations from interfering with one another. An
example is the rule that only one computation may modify a shared data
structure at a time. Like an operating system, middleware may bring com-
putations at different times into contact through persistent storage and may
support interaction between computations on different computers by pro-
viding network communication services.

Operating systems and middleware are not the same, however. They
rely upon different underlying providers of lower-level services. An operat-
ing system provides the services in its API by making use of the features
supported by the hardware. For example, it might provide API services
of reading and writing named, variable-length files by making use of a disk
drive’s ability to read and write numbered, fixed-length blocks of data. Mid-
dleware, on the other hand, provides the services in its API by making use
of the features supported by an underlying operating system. For example,
the middleware might provide API services for updating relational database
tables by making use of an operating system’s ability to read and write files
that contain the database.

This layering of middleware on top of an operating system, as illustrated
in Figure explains the name; middleware is in the middle of the vertical
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stack, between the application programs and the operating system. Viewed
horizontally rather than vertically, middleware is also in the middle of in-
teractions between different application programs (possibly even running
on different computer systems), because it provides mechanisms to support
controlled interaction through coordination, persistent storage, naming, and
communication.

I already mentioned relational database systems as one example of mid-
dleware. Such systems provide a more sophisticated form of persistent stor-
age than the files supported by most operating systems. I use Oracle as my
primary source of examples regarding relational database systems. Other
middleware I will use for examples in the book includes the Java 2 Plat-
form, Enterprise Edition (J2EE) and IBM’s WebSphere MQ. These systems
provide support for keeping computations largely isolated from undesirable
interactions, while allowing them to communicate with one another even if
running on different computers.

The marketing definition of middleware doesn’t always correspond ex-
actly with my technical definition. In particular, some middleware is of
such fundamental importance that it is distributed as part of the operat-
ing system bundle, rather than as a separate middleware product. As an
example, general-purpose operating systems all come equipped with some
mechanism for translating Internet hostnames, such as www.gustavus.edu,
into numerical addresses. These mechanisms are typically outside the oper-
ating system kernel, but provide a general supporting service to application
programs. Therefore, by my definition, they are middleware, even if not
normally labeled as such.

[
| Application | | Application |

1 |

: | Application |

1 1
1

| Middleware | g g g | Middleware |
Database
| Operating System | Table | Operating System |

Figure 1.2: Middleware uses services from an operating system and in turn
provides services to application programs to support controlled interaction.
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1.4 Objectives for the Book

If you work your way through this book, you will gain both knowledge
and skills. Notice that I did not say anything about reading the book, but
rather about working your way through the book. Each chapter in this book
concludes with exercises, programming projects, exploration projects, and
some bibliographic or historical notes. To achieve the objectives of the book,
you need to work exercises, carry out projects, and occasionally venture
down one of the side trails pointed out by the end-of-chapter notes. Some of
the exploration projects will specifically direct you to do research in outside
sources, such as on the Internet or in a library. Others will call upon you to
do experimental work, such as measuring the performance consequences of
a particular design choice. If you are going to invest that kind of time and
effort, you deserve some idea of what you stand to gain from it. Therefore, I
will explain in the following paragraphs how you will be more knowledgeable
and skilled after finishing the book.

First, you will gain a general knowledge of how contemporary operat-
ing systems and middleware work and some idea why they work that way.
That knowledge may be interesting in its own right, but it also has prac-
tical applications. Recall that these systems provide supporting APIs for
application programmers to use. Therefore, one payoff will be that if you
program applications, you will be positioned to make more effective use of
the supporting APIs. This is true even though you won’t be an expert at
any particular API; instead, you’ll see the big picture of what services those
APIs provide.

Another payoff will be if you are in a role where you need to alter the
configuration of an operating system or middleware product in order to tune
its performance or make it best serve a particular context. Again, this one
book alone won’t give you all the specific knowledge you need about any
particular system, but it will give you the general background to make sense
out of more specialized references.

Perhaps the most significant payoff for learning the details of today’s
systems in the context of the reasons behind their designs is that you will
be in a better position to learn tomorrow’s systems. You will be able to see
in what ways they are different and in what ways they are fundamentally
still the same. You will be able to put new features into context, often as
a new solution to an old problem, or even just as a variant on an existing
solution. If you really get excited by what you learn from this book, you
could even use your knowledge as the foundation for more advanced study
and become one of the people who develops tomorrow’s systems.
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Second, in addition to knowledge about systems, you will learn some
skills that are applicable even outside the context of operating systems and
middleware. Some of the most important skills come from the exploration
projects. For example, if you take those projects seriously, you’ll practice
not only conducting experiments, but also writing reports describing the
experiments and their results. That will serve you well in many contexts.

I have also provided you with some opportunities to develop proficiency
in using the professional literature, such as documentation and the papers
published in conference proceedings. Those sources go into more depth than
this book can, and they will always be more up-to-date.

From the programming projects, you’ll gain some skill at writing pro-
grams that have several interacting components operating concurrently with
one another and that keep their interactions under control. You’ll also de-
velop some skill at writing programs that interact over the Internet. In
neither case will you become a master programmer. However, in both cases,
you will be laying a foundation of skills that are relevant to a range of
development projects and environments.

Another example of a skill you can acquire is the ability to look at the
security ramifications of design decisions. I have a security section in each
chapter, rather than a security chapter only at the end of the book, because I
want you to develop the habit of asking, “What are the security issues here?”
That question is relevant even outside the realm of operating systems and
middleware.

As I hope you can see, studying operating systems and middleware can
provide a wide range of benefits, particularly if you engage yourself in it as
an active participant, rather than as a spectator. With that for motivation,
I will now take you on another tour of the services operating systems and
middleware provide. This tour is more detailed than Sections and
but not as detailed as Chapters 2] through

1.5 Multiple Computations on One Computer

The single most fundamental service an operating system provides is to allow
multiple computations to be going on at the same time, rather than forcing
each to wait until the previous one has run to completion. This allows
desktop computers to juggle multiple tasks for the busy humans seated in
front of their screens, and it allows server computers to be responsive to
requests originating from many different client computers on the Internet.
Beyond these responsiveness concerns, concurrent computations can also
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make more efficient use of a computer’s resources. For example, while one
computation is stalled waiting for input to arrive, another computation can
be making productive use of the processor.

A variety of words can be used to refer to the computations underway
on a computer; they may be called threads, processes, tasks, or jobs. In this
book, I will use both the word “thread” and the word “process,” and it is
important that I explain now the difference between them.

A thread is the fundamental unit of concurrency. Any one sequence of
programmed actions is a thread. Executing a program might create multiple
threads, if the program calls for several independent sequences of actions run
concurrently with one another. Even if each execution of a program creates
only a single thread, which is the more normal case, a typical system will be
running several threads: one for each ongoing program execution, as well as
some that are internal parts of the operating system itself.

When you start a program running, you are always creating one or more
threads. However, you are also creating a process. The process is a container
that holds the thread or threads that you started running and protects
them from unwanted interactions with other unrelated threads running on
the same computer. For example, a thread running in one process cannot
accidentally overwrite memory in use by a different process.

Because human users normally start a new process running every time
they want to make a new computation happen, it is tempting to think of
processes as the unit of concurrent execution. This temptation is ampli-
fied by the fact that older operating systems required each process to have
exactly one thread, so that the two kinds of object were in one-to-one corre-
spondence, and it was not important to distinguish them. However, in this
book, I will consistently make the distinction. When I am referring to the
ability to set an independent sequence of programmed actions in motion, I
will write about creating threads. Only when I am referring to the ability
to protect threads will I write about creating processes.

In order to support threads, operating system APIs include features such
as the ability to create a new thread and to kill off an existing thread. In-
side the operating system, there must be some mechanism for switching
the computer’s attention between the various threads. When the operating
system suspends execution of one thread in order to give another thread a
chance to make progress, the operating system must store enough informa-
tion about the first thread to be able to successfully resume its execution
later. Chapter 2| addresses these issues.

Some threads may not be runnable at any particular time, because they
are waiting for some event, such as the arrival of input. However, in general,
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an operating system will be confronted with multiple runnable threads and
will have to choose which ones to run at each moment. This problem of
scheduling threads’ execution has many solutions, which are surveyed in
Chapter The scheduling problem is interesting, and has generated so
many solutions, because it involves the balancing of system users’ competing
interests and values. No individual scheduling approach will make everyone
happy all the time. My focus is on explaining how the different scheduling
approaches fit different contexts of system usage and achieve differing goals.
In addition I explain how APIs allow programmers to exert control over
scheduling, for example, by indicating that some threads should have higher
priority than others.

1.6 Controlling the Interactions Between Compu-
tations

Running multiple threads at once becomes more interesting if the threads
need to interact, rather than execute completely independently of one an-
other. For example, one thread might be producing data that another thread
consumes. If one thread is writing data into memory and another is read-
ing the data out, you don’t want the reader to get ahead of the writer and
start reading from locations that have yet to be written. This illustrates one
broad family of control for interaction: control over the relative timing of
the threads’ execution. Here, a reading step must take place after the cor-
responding writing step. The general name for control over threads’ timing
is synchronization.

Chapter M| explains several common synchronization patterns, includ-
ing keeping a consumer from outstripping the corresponding producer. It
also explains the mechanisms that are commonly used to provide synchro-
nization, some of which are supported directly by operating systems, while
others require some modest amount of middleware, such as the Java runtime
environment.

That same chapter also explains a particularly important difficulty that
can arise from the use of synchronization. Synchronization can force one
thread to wait for another. What if the second thread happens to be wait-
ing for the first? This sort of cyclic waiting is known as a deadlock. My
discussion of ways to cope with deadlock also introduces some significant
middleware, because database systems provide an interesting example of
deadlock handling.

In Chapter 5| I expand on the themes of synchronization and middleware
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by explaining transactions, which are commonly supported by middleware.
A transaction is a unit of computational work for which no intermediate
state from the middle of the computation is ever visible. Concurrent trans-
actions are isolated from seeing each other’s intermediate storage. Addi-
tionally, if a transaction should fail, the storage will be left as it was before
the transaction started. Even if the computer system should catastroph-
ically crash in the middle of a transaction’s execution, the storage after
rebooting will not reflect the partial transaction. This prevents results of a
half-completed transaction from becoming visible. Transactions are incred-
ibly useful in designing reliable information systems and have widespread
commercial deployment. They also provide a good example of how mathe-
matical reasoning can be used to help design practical systems; this will be
the chapter where I most prominently expect you to understand a proof.

Even threads that have no reason to interact may accidentally interact, if
they are running on the same computer and sharing the same memory. For
example, one thread might accidentally write into memory being used by the
other. This is one of several reasons why operating systems provide virtual
memory, the topic of Chapter [6] Virtual memory refers to the technique of
modifying addresses on their way from the processor to the memory, so that
the addresses actually used for storing values in memory may be different
from those appearing in the processor’s load and store instructions. This
is a general mechanism provided through a combination of hardware and
operating system software. I explain several different goals this mechanism
can serve, but the most simple is isolating threads in one process from those
in another by directing their memory accesses to different regions of memory.

Having broached the topic of providing processes with isolated virtual
memory, I devote Chapter [7] to processes. This chapter explains an API
for creating processes. However, I also focus on protection mechanisms, not
only by building on Chapter [f]s introduction of virtual memory, but also by
explaining other forms of protection that are used to protect processes from
one another and to protect the operating system itself from the processes.
Some of these protection mechanisms can be used to protect not just the
storage of values in memory, but also longer-term data storage, such as files,
and even network communication channels. Therefore, Chapter [7|lays some
groundwork for the later treatment of these topics.

Chapter [7] also provides me an opportunity to clarify one point about
threads left open by Chapter By showing how operating systems pro-
vide a protective boundary between themselves and the running application
processes, I can explain where threads fall relative to this boundary. In par-
ticular, there are threads that are contained entirely within the operating
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system kernel, others that are contained entirely within an application pro-
cess, and yet others that cross the boundary, providing support from within
the kernel for concurrent activities within the application process. Although
it might seem natural to discuss these categories of threads in Chapter 2] the
chapter on threads, I really need to wait for Chapter [7]in order to make any
more sense out of the distinctions than I've managed in this introductory
paragraph.

When two computations run concurrently on a single computer, the hard
part of supporting controlled interaction is to keep the interaction under con-
trol. For example, in my earlier example of a pair of threads, one produces
some data and the other consumes it. In such a situation, there is no great
mystery to how the data can flow from one to the other, because both are
using the same computer’s memory. The hard part is regulating the use of
that shared memory. This stands in contrast to the interactions across time
and space, which I will address in Sections [1.7] and If the producer and
consumer run at different times, or on different computers, the operating
system and middleware will need to take pains to convey the data from one
to the other.

1.7 Supporting Interaction Across Time

General purpose operating systems all support some mechanism for com-
putations to leave results in long-term storage, from which they can be
retrieved by later computations. Because this storage persists even when
the system is shut down and started back up, it is known as persistent stor-
age. Normally, operating systems provide persistent storage in the form of
named files, which are organized into a hierarchy of directories or folders.
Other forms of persistent storage, such as relational database tables and
application-defined persistent objects, are generally supported by middle-
ware. In Chapter [§] I focus on file systems, though I also explain some of
the connections with middleware. For example, I compare the storage of file
directories with that of database indexes. This comparison is particularly
important as these areas are converging. Already the underlying mecha-
nisms are very similar, and file systems are starting to support indexing
services like those provided by database systems.

There are two general categories of file APIs, both of which I cover in
Chapter The files can be made a part of the process’s virtual mem-
ory space, accessible with normal load and store instructions, or they can
be treated separately, as external entities to read and write with explicit



14 CHAPTER 1. INTRODUCTION

operations.

Either kind of file API provides a relatively simple interface to some quite
significant mechanisms hidden within the operating system. Chapter [§] also
provides a survey of some of these mechanisms.

As an example of a simple interface to a sophisticated mechanism, an
application programmer can make a file larger simply by writing additional
data to the end of the file. The operating system, on the other hand, has
to choose the location where the new data will be stored. When disks are
used, this space allocation has a strong influence on performance, because
of the physical realities of how disk drives operate.

Another job for the file system is to keep track of where the data for each
file is located. It also keeps track of other file-specific information, such as
access permissions. Thus, the file system not only stores the files’ data, but
also stores metadata, which is data describing the data.

All these mechanisms are similar to those used by middleware for pur-
poses such as allocating space to hold database tables. Operating systems
and middleware also store information, such as file directories and database
indexes, used to locate data. The data structures used for these naming and
indexing purposes are designed for efficient access, just like those used to
track the allocation of space to stored objects.

To make the job of operating systems and middleware even more chal-
lenging, persistent storage structures are expected to survive system crashes
without significant loss of integrity. For example, it is not acceptable after
a crash for specific storage space to be listed as available for allocation and
also to be listed as allocated to a file. Such a confused state must not occur
even if the crash happened just as the file was being created or deleted.
Thus, Chapter [§ builds on Chapter [5s explanation of atomic transactions,
while also outlining some other mechanisms that can be used to protect the
integrity of metadata, directories, and indexes.

Persistent storage is crucially important, perhaps even more so in the
Internet age than in prior times, because servers now hold huge amounts of
data for use by clients all over the world. Nonetheless, persistent storage no
longer plays as unique a role as it once did. Once upon a time, there were
many computer systems in which the only way processes communicated was
through persistent storage. Today, that is almost unthinkable, because com-
munication often spans the Internet. Therefore, as I explain in Section [1.§
operating systems provide support for networking, and middleware provides
further support for the construction of distributed systems.
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1.8 Supporting Interaction Across Space

In order to build coherent software systems with components operating on
differing computers, programmers need to solve lots of problems. Consider
two examples: data flowing in a stream must be delivered in order, even
if sent by varying routes through interconnected networks, and message
delivery must be incorporated into the all-or-nothing guarantees provided
by transactions. Luckily, application programmers don’t need to solve most
of these problems, because appropriate supporting services are provided by
operating systems and middleware.

I divide my coverage of these services into two chapters. Chapter [9] pro-
vides a foundation regarding networking, so that this book will stand on
its own if you have not previously studied networking. That chapter also
covers services commonly provided by operating systems, or in close conjunc-
tion with operating systems, such as distributed file systems. Chapter
in contrast, explains the higher-level services that middleware provides for
application-to-application communication, in such forms as messaging and
web services. Each chapter introduces example APIs that you can use as an
application programmer, as well as the more general principles behind those
specific APIs.

Networking systems, as I explain in Chapter [J] are generally partitioned
into layers, where each layer makes use of the services provided by the layer
under it in order to provide additional services to the layer above it. At the
bottom of the stack is the physical layer, concerned with such matters as
copper, fiber optics, radio waves, voltages, and wavelengths. Above that is
the link layer, which provides the service of transmitting a chunk of data to
another computer on the same local network. This is the point where the op-
erating system becomes involved. Building on the link-layer foundation, the
operating system provides the services of the network layer and the transport
layer. The network layer arranges for data to be relayed through intercon-
nected networks so as to arrive at a computer that may be elsewhere in the
world. The transport layer builds on top of this basic computer-to-computer
data transmission to provide more useful application-to-application commu-
nication channels. For example, the transport layer typically uses sequence
numbering and retransmission to provide applications the service of in-order,
loss-free delivery of streams of data. This is the level of the most common
operating system API, which provides sockets, that is, endpoints for these
transport-layer connections.

The next layer up is the application layer. A few specialized application-
layer services, such as distributed file systems, are integrated with operating
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systems. However, most application-layer software, such as web browsers
and email programs, is written by application programmers. These applica-
tions can be built directly on an operating system’s socket API and exchange
streams of bytes that comply with standardized protocols. In Chapter [0 I
illustrate this possibility by showing how web browsers and web servers
communicate.

Alternatively, programmers of distributed applications can make use of
middleware to work at a higher level than sending bytes over sockets. I
show two basic approaches to this in Chapter messaging and Remote
Procedure Calls (RPCs). Web services are a particular approach to stan-
dardizing these kinds of higher-level application communication, and have
been primarily used with RPCs: I show how to use them in this way.

In a messaging system, an application program requests the delivery of a
message. The messaging system not only delivers the message, which lower-
level networking could accomplish, but also provides additional services. For
example, the messaging is often integrated with transaction processing. A
successful transaction may retrieve a message from an incoming message
queue, update a database in response to that message, and send a response
message to an outgoing queue. If the transaction fails, none of these three
changes will happen; the request message will remain in the incoming queue,
the database will remain unchanged, and the response message will not be
queued for further delivery. Another common service provided by messag-
ing systems is to deliver a message to any number of recipients who have
subscribed to receive messages of a particular kind; the sender need not be
aware of who the actual receivers are.

Middleware can also provide a mechanism for Remote Procedure Call
(RPC), in which communication between a client and a server is made to
look like an ordinary programming language procedure call, such as invoking
a method on an object. The only difference is that the object in question is
located on a different computer, and so the call and return involve network
communication. The middleware hides this complexity, so that the applica-
tion programmer can work largely as though all the objects were local. In
Chapter I explain this concept more fully, and then go on to show how it
plays out in the form of web services. A web service is a an application-layer
entity that programs can communicate with using standardized protocols
similar to those humans use to browse the web.



1.9. SECURITY 17

1.9 Security

Operating systems and middleware are often the targets of attacks by ad-
versaries trying to defeat system security. Even attacks aimed at application
programs often relate to operating systems and middleware. In particular,
easily misused features of operating systems and middleware can be the
root cause of an application-level vulnerability. On the other hand, operat-
ing systems and middleware provide many features that can be very helpful
in constructing secure systems.

A system is secure if it provides an acceptably low risk that an adversary
will prevent the system from achieving its owner’s objectives. In Chapter[I]
I explain in more detail how to think about risk and about the conflicting
objectives of system owners and adversaries. In particular, I explain that
some of the most common objectives for owners fall into four categories:
confidentiality, integrity, availability, and accountability. A system provides
confidentiality if it prevents inappropriate disclosure of information, integrity
if it prevents inappropriate modification or destruction of information, and
availability if it prevents inappropriate interference with legitimate usage. A
system provides accountability if it provides ways to check how authorized
users have exercised their authority. All of these rely on authentication, the
ability of a system to verify the identity of a user.

Many people have a narrow view of system security. They think of those
features that would not even exist, were it not for security issues. Clearly,
logging in with a password (or some other, better form of authentication) is
a component of system security. Equally clearly, having permission to read
some files, but not others, is a component of system security, as are crypto-
graphic protocols used to protect network communication from interception.
However, this view of security is dangerously incomplete.

You need to keep in mind that the design of any component of the
operating system can have security consequences. Even those parts whose
design is dominated by other considerations must also reflect some proactive
consideration of security consequences, or the overall system will be insecure.
In fact, this is an important principle that extends beyond the operating
system to include application software and the humans who operate it.

Therefore, I will make a habit of addressing security issues in every
chapter, rather than only at the end of the book. Specifically, each chapter
concludes with a section pointing out some of the key security issues asso-
ciated with that chapter’s topic. I also provide a more coherent treatment
of security by concluding the book as a whole with Chapter which is
devoted exclusively to security. That chapter takes a holistic approach to
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security, in which human factors play as important a role as technical ones.

Exercises

1.1

1.2

1.3

14

1.5

1.6

1.7

What is the difference between an operating system and middleware?
What do operating systems and middleware have in common?
What is the relationship between threads and processes?

What is one way an operating system might isolate threads from un-
wanted interactions, and what is one way that middleware might do
so?

What is one way an operating system might provide persistent storage,
and what is one way middleware might do so?

What is one way an operating system might support network commu-
nication, and what is one way middleware might do so?

Of all the topics previewed in this chapter, which one are you most
looking forward to learning more about? Why?

Programming Project

1.1

Write, test, and debug a program in the language of your choice to
carry out any task you choose. Then write a list of all the services
you suspect the operating system is providing in order to support the
execution of your sample program. If you think the program is also
relying on any middleware services, list those as well.

Exploration Projects

1.1

Look through the titles of the papers presented at several recent con-
ferences hosted by the USENIX Association (The Advanced Comput-
ing Systems Association); you can find the conference proceedings at
www.useniz.org. To get a better idea what an individual paper is
about, click the title to show the abstract, which is a short summary
of the paper. Based on titles and abstracts, pick out a few papers that
you think would make interesting supplementary reading as you work
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your way through this book. Write down a list showing the biblio-
graphic information for the papers you selected and, as near as you
can estimate, where in this book’s table of contents they would be
appropriate to read.

1.2 Conduct a simple experiment in which you take some action on a
computer system and observe what the response is. You can choose
any action you wish and any computer system for which you have
appropriate access. You can either observe a quantitative result, such
as how long the response takes or how much output is produced, or
a qualitative result, such as in what form the response arrives. Now,
try replicating the experiment. Do you always get the same result?
Similar ones? Are there any factors that need to be controlled in
order to get results that are at least approximately repeatable? For
example, to get consistent times, do you need to reboot the system
between each trial and prevent other people from using the system?
To get consistent output, do you need to make sure input files are
kept unchanged? If your action involves a physical device, such as a
printer, do you have to control variables such as whether the printer
is stocked with paper? Finally, write up a careful report, in which
you explain both what experiment you tried and what results you
observed. You should explain how repeatable the results proved to be
and what limits there were on the repeatability. You should describe
the hardware and software configuration in enough detail that someone
else could replicate your experiment and would be likely to get similar
results.

Notes

The idea that an operating system should isolate computations from un-
wanted interactions, and yet support desirable interactions, has a long her-
itage. A 1962 paper [38] by Corbat6, Daggett, and Daley points out that
“different user programs if simultaneously in core memory may interfere with
each other or the supervisor program so some form of memory protection
mode should be available when operating user programs.” However, that
same paper goes on to say that although “great care went into making each
user independent of the other users ... it would be a useful extension of the
system if this were not always the case,” so that the computer system could
support group work, such as war games.



20 CHAPTER 1. INTRODUCTION

Middleware is not as well-known to the general public as operating sys-
tems are, though commercial information-system developers would be lost
without it. One attempt to introduce middleware to a somewhat broader
audience was Bernstein’s 1996 survey article [17].

The USENIX Association, mentioned in Exploration Project is only
one of several very fine professional societies holding conferences related to
the subject matter of this book. The reason why I specifically recommended
looking through their proceedings is that they tend to be particularly ac-
cessible to students. In part this is because USENIX focuses on bringing
practitioners and academics together; thus, the papers generally are prag-
matic without being superficial. The full text is available on their web site.



Chapter 2

Threads

2.1 Introduction

Computer programs consist of instructions, and computers carry out se-
quences of computational steps specified by those instructions. We call
each sequence of computational steps that are strung together one after an-
other a thread. The simplest programs to write are single-threaded, with
instructions that should be executed one after another in a single sequence.
However, in Section you will learn how to write programs that produce
more than one thread of execution, each an independent sequence of compu-
tational steps, with few if any ordering constraints between the steps in one
thread and those in another. Multiple threads can also come into existence
by running multiple programs, or by running the same program more than
once.

Note the distinction between a program and a thread; the program con-
tains instructions, whereas the thread consists of the execution of those
instructions. Even for single-threaded programs, this distinction matters.
If a program contains a loop, then a very short program could give rise
to a very long thread of execution. Also, running the same program ten
times will give rise to ten threads, all executing one program. Figure [2.1
summarizes how threads arise from programs.

Each thread has a lifetime, extending from the time its first instruc-
tion execution occurs until the time of its last instruction execution. If two
threads have overlapping lifetimes, as illustrated in Figure we say they
are concurrent. One of the most fundamental goals of an operating sys-
tem is to allow multiple threads to run concurrently on the same computer.
That is, rather than waiting until the first thread has completed before a

21
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Single-threaded program Multiple single-threaded programs
_ Thead _, Threada

Thread B

Multi-threaded program Multiple runs of one single-threaded program
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Figure 2.1: Programs give rise to threads
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Figure 2.2: Sequential and concurrent threads
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second thread can run, it should be possible to divide the computer’s atten-
tion between them. If the computer hardware includes multiple processors,
then it will naturally be possible to run threads concurrently, one per pro-
cessor. However, the operating system’s users will often want to run more
concurrent threads than the hardware has processors, for reasons described
in Section Therefore, the operating system will need to divide each pro-
cessor’s attention between multiple threads. In this introductory textbook
I will mostly limit myself to the case of all the threads needing to be run on
a single processor. I will explicitly indicate those places where I do address
the more general multi-processor case.

In order to make the concept of concurrent threads concrete, Section
shows how to write a program that spawns multiple threads each time the
program is run. Once you know how to create threads, I will explain in Sec-
tion [2.3] some of the reasons why it is desirable to run multiple threads con-
currently and will offer some typical examples of the uses to which threads
are put.

These first two sections explain the application programmer’s view of
threads: how and why the programmer would use concurrent threads. This
sets us up for the next question: how does the operating system support
the application programmer’s desire for concurrently executing threads? In
Sections [2.4) and 2.5 we will examine how the system does so. In this chap-
ter, we will consider only the fundamentals of how the processor’s attention
is switched from one thread to another. Some of the related issues I address
in other chapters include deciding which thread to run at each point (Chap-
ter [3)) and controlling interaction among the threads (Chapters @ and
. Also, as explained in Chapter I will wait until Chapterto explain the
protection boundary surrounding the operating system. Thus, I will need
to wait until that chapter to distinguish threads that reside entirely within
that boundary, threads provided from inside the boundary for use outside of
it, and threads residing entirely outside the boundary (known as user-level
threads or, in Microsoft Windows, fibers).

Finally, the chapter concludes with the standard features of this book:
a brief discussion of security issues, followed by exercises, programming and
exploration projects, and notes.

2.2 Example of Multithreaded Programs

Whenever a program initially starts running, the computer carries out the
program’s instructions in a single thread. Therefore, if the program is in-
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tended to run in multiple threads, the original thread needs at some point
to spawn off a child thread that does some actions, while the parent thread
continues to do others. (For more than two threads, the program can repeat
the thread-creation step.) Most programming languages have an application
programming interface (or API) for threads that includes a way to create
a child thread. In this section, I will use the Java API and the API for
C that is called pthreads, for POSIX threads. (As you will see throughout
the book, POSIX is a comprehensive specification for UNIX-like systems,
including many APIs beyond just thread creation.)

Realistic multithreaded programming requires the control of thread in-
teractions, using techniques I show in Chapter [d] Therefore, my examples in
this chapter are quite simple, just enough to show the spawning of threads.

To demonstrate the independence of the two threads, I will have both
the parent and the child thread respond to a timer. One will sleep three
seconds and then print out a message. The other will sleep five seconds and
then print out a message. Because the threads execute concurrently, the
second message will appear approximately two seconds after the first. (In
Programming Projects and you can write a somewhat more
realistic program, where one thread responds to user input and the other to
the timer.)

Figure 2.3 shows the Java version of this program. The main program
first creates a Thread object called childThread. The Runnable object asso-
ciated with the child thread has a run method that sleeps three seconds (ex-
pressed as 3000 milliseconds) and then prints a message. This run method
starts running when the main procedure invokes childThread.start (). Be-
cause the run method is in a separate thread, the main thread can continue
on to the subsequent steps, sleeping five seconds (5000 milliseconds) and
printing its own message.

Figure is the equivalent program in C, using the pthreads API. The
child procedure sleeps three seconds and prints a message. The main proce-
dure creates a child_thread running the child procedure, and then itself
sleeps five seconds and prints a message. The most significant difference
from the Java API is that pthread_create both creates the child thread
and starts it running, whereas in Java those are two separate steps.

In addition to portable APIs, such as the Java and pthreads APIs, many
systems provide their own non-portable APIs. For example, Microsoft Win-
dows has the Win32 API, with procedures such as CreateThread and Sleep.
In Programming Project you can modify the program from Figure [2.4
to use this API.
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public class Simple2Threads {
public static void main(String args[]){
Thread childThread = new Thread(new Runnable(){
public void run(){
sleep(3000);
System.out.println("Child is done sleeping 3 seconds.");
b
s
childThread.start();
sleep(5000);
System.out.println("Parent is done sleeping 5 seconds.");

}

private static void sleep(int milliseconds){
try{
Thread.sleep(milliseconds);
} catch(InterruptedException e){
// ignore this exception; it won’t happen anyhow
}
}
}

Figure 2.3: A simple multithreaded program in Java
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#include <pthread.h>
#include <unistd.h>
#include <stdio.h>

static void *child(void *ignored){
sleep(3);
printf("Child is done sleeping 3 seconds.\n");
return NULL;

}

int main(int argc, char *argv[]){
pthread_t child_thread;
int code;

code = pthread_create(&child_thread, NULL, child, NULL);
if (code){
fprintf (stderr, "pthread create failed with code %d\n", code);
}
sleep(5);
printf ("Parent is done sleeping 5 seconds.\n");
return O;

Figure 2.4: A simple multithreaded program in C
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2.3 Reasons for Using Concurrent Threads

You have now seen how a single execution of one program can result in
more than one thread. Presumably, you were already at least somewhat
familiar with generating multiple threads by running multiple programs, or
by running the same program multiple times. Regardless of how the threads
come into being, we are faced with a question. Why is it desirable for
the computer to execute multiple threads concurrently, rather than waiting
for one to finish before starting another? Fundamentally, most uses for
concurrent threads serve one of two goals:

Responsiveness: allowing the computer system to respond quickly to some-
thing external to the system, such as a human user or another com-
puter system. Even if one thread is in the midst of a long computation,
another thread can respond to the external agent. Our example pro-
grams in Section illustrated responsiveness: both the parent and
the child thread responded to a timer.

Resource utilization: keeping most of the hardware resources busy most
of the time. If one thread has no need for a particular piece of hard-
ware, another may be able to make productive use of it.

Each of these two general themes has many variations, some of which we
explore in the remainder of this section. A third reason why programmers
sometimes use concurrent threads is as a tool for modularization. With this,
a complex system may be decomposed into a group of interacting threads.
Let’s start by considering the responsiveness of a web server, which pro-
vides many client computers with the specific web pages they request over
the Internet. Whenever a client computer makes a network connection to
the server, it sends a sequence of bytes that contain the name of the desired
web page. Therefore, before the server program can respond, it needs to
read in those bytes, typically using a loop that continues reading in bytes
from the network connection until it sees the end of the request. Suppose
one of the clients is connecting using a very slow network connection, per-
haps via a dial-up modem. The server may read the first part of the request
and then have to wait a considerable length of time before the rest of the
request arrives over the network. What happens to other clients in the
meantime? It would be unacceptable for a whole web site to grind to a halt,
unable to serve any clients, just waiting for one slow client to finish issuing
its request. One way some web servers avoid this unacceptable situation
is by using multiple threads, one for each client connection, so that even if
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one thread is waiting for data from one client, other threads can continue
interacting with the other clients. Figure illustrates the unacceptable
single-threaded web server and the more realistic multithreaded one.

On the client side, a web browser may also illustrate the need for re-
sponsiveness. Suppose you start loading in a very large web page, which
takes considerable time to download. Would you be happy if the computer
froze up until the download finished? Probably not. You expect to be able
to work on a spreadsheet in a different window, or scroll through the first
part of the web page to read as much as has already downloaded, or at least
click on the Stop button to give up on the time-consuming download. Each
of these can be handled by having one thread tied up loading the web page
over the network, while another thread is responsive to your actions at the
keyboard and mouse.

This web browser scenario also lets me foreshadow later portions of the
textbook concerning the controlled interaction between threads. Note that
I sketched several different things you might want to do while the web page
downloaded. In the first case, when you work on a spreadsheet, the two
concurrent threads have almost nothing to do with one another, and the op-
erating system’s job, beyond allowing them to run concurrently, will mostly
consist of isolating each from the other, so that a bug in the web browser
doesn’t overwrite part of your spreadsheet, for example. This is gener-
ally done by encapsulating the threads in separate protection environments
known as processes, as we will discuss in Chapters |§| and |7l (Some systems
call processes tasks, while others use task as a synonym for thread.) If, on
the other hand, you continue using the browser’s user interface while the
download continues, the concurrent threads are closely related parts of a
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Figure 2.5: Single-threaded and multithreaded web servers
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single application, and the operating system need not isolate the threads
from one another. However, it may still need to provide mechanisms for
regulating their interaction. For example, some coordination between the
downloading thread and the user-interface thread is needed to ensure that
you can scroll through as much of the page as has been downloaded, but
no further. This coordination between threads is known as synchronization
and is the topic of Chapters [4 and

Turning to the utilization of hardware resources, the most obvious sce-
nario is when you have a dual-processor computer. In this case, if the system
ran only one thread at a time, only half the processing capacity would ever
be used. Even if the human user of the computer system doesn’t have more
than one task to carry out, there may be useful housekeeping work to keep
the second processor busy. For example, most operating systems, if asked
to allocate memory for an application program’s use, will store all zeros into
the memory first. Rather than holding up each memory allocation while
the zeroing is done, the operating system can have a thread that proac-
tively zeros out unused memory, so that when needed, it will be all ready. If
this housekeeping work (zeroing of memory) were done on demand, it would
slow down the system’s real work; by using a concurrent thread to utilize the
available hardware more fully, the performance is improved. This example
also illustrates that not all threads need to come from user programs. A
thread can be part of the operating system itself, as in the example of the
thread zeroing out unused memory.

Even in a single-processor system, resource utilization considerations
may justify using concurrent threads. Remember that a computer system
contains hardware resources, such as disk drives, other than the processor.
Suppose you have two tasks to complete on your PC: you want to scan all
the files on disk for viruses, and you want to do a complicated photo-realistic
rendering of a three-dimensional scene including not only solid objects, but
also shadows cast on partially transparent smoke clouds. From experience,
you know that each of these will take about an hour. If you do one and then
the other, it will take two hours. If instead you do the two concurrently—
running the virus scanner in one window while you run the graphics render-
ing program in another window—you may be pleasantly surprised to find
both jobs done in only an hour and a half.

The explanation for the half-hour savings in elapsed time is that the virus
scanning program spends most of its time using the disk drive to read files,
with only modest bursts of processor activity each time the disk completes a
read request, whereas the rendering program spends most of its time doing
processing, with very little disk activity. As illustrated in Figure running
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them in sequence leaves one part of the computer’s hardware idle much of
the time, whereas running the two concurrently keeps the processor and
disk drive both busy, improving the overall system efficiency. Of course,
this assumes the operating system’s scheduler is smart enough to let the
virus scanner have the processor’s attention (briefly) whenever a disk request
completes, rather than making it wait for the rendering program. I will
address this issue in Chapter

As you have now seen, threads can come from multiple sources and
serve multiple roles. They can be internal portions of the operating system,
as in the example of zeroing out memory, or part of the user’s application
software. In the latter case, they can either be dividing up the work within a
multithreaded process, such as the web server and web browser examples, or
can come from multiple independent processes, as when a web browser runs
in one window and a spreadsheet in another. Regardless of these variations,
the typical reasons for running the threads concurrently remain unchanged:
either to provide increased responsiveness or to improve system efficiency by
more fully utilizing the hardware. Moreover, the basic mechanism used to
divide the processor’s attention among multiple threads remains the same
in these different cases as well; I describe that mechanism in Sections [2.4]
and Of course, some cases require the additional protection mechanisms
provided by processes, which we discuss in Chapters[6]and[7] However, even
then, it is still necessary to leave off work on one thread and pick up work
on another.

2.4 Switching Between Threads

In order for the operating system to have more than one thread underway
on a processor, the system needs to have some mechanism for switching
attention between threads. In particular, there needs to be some way to
leave off from in the middle of a thread’s sequence of instructions, work for
a while on other threads, and then pick back up in the original thread right
where it left off. In order to explain thread switching as simply as possible, I
will initially assume that each thread is executing code that contains, every
once in a while, explicit instructions to temporarily switch to another thread.
Once you understand this mechanism, I can then build on it for the more
realistic case where the thread contains no explicit thread-switching points,
but rather is automatically interrupted for thread switches.

Suppose we have two threads, A and B, and we use Al, A2, A3, and
so forth as names for the instruction execution steps that constitute A, and
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Figure 2.6: Overlapping processor-intensive and disk-intensive activities

similarly for B. In this case, one possible execution sequence might be as
shown in Figure[2.7] As I will explain subsequently, when thread A executes
switchFromTo (A,B) the computer starts executing instructions from thread
B. In a more realistic example, there might be more than two threads, and
each might run for many more steps (both between switches and overall),
with only occasionally a new thread starting or an existing thread exiting.

Our goal is that the steps of each thread form a coherent execution
sequence. That is, from the perspective of thread A, its execution should not
be much different from one in which A1 through A8 occurred consecutively,
without interruption, and similarly for thread B’s steps B1 through B9.
Suppose, for example, steps Al and A2 load two values from memory into
registers, A3 adds them, placing the sum in a register, and A4 doubles that
register’s contents, so as to get twice the sum. In this case, we want to
make sure that A4 really does double the sum computed by Al through A3,
rather than doubling some other value that thread B’s steps Bl through
B3 happen to store in the same register. Thus, we can see that switching
threads cannot simply be a matter of a jump instruction transferring control
to the appropriate instruction in the other thread. At a minimum, we will
also have to save registers into memory and restore them from there, so
that when a thread resumes execution, its own values will be back in the
registers.

In order to focus on the essentials, let’s put aside the issue of how threads
start and exit. Instead, let’s focus just on the normal case where one thread
in progress puts itself on hold and switches to another thread where that
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Figure 2.7: Switching between threads
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other thread last left off, such as the switch from A5 to B4 in the preceding
example. To support switching threads, the operating system will need
to keep information about each thread, such as at what point that thread
should resume execution. If this information is stored in a block of memory
for each thread, then we can use the addresses of those memory areas to
refer to the threads. The block of memory containing information about a
thread is called a thread control block or task control block (TCB). Thus,
another way of saying that we use the addresses of these blocks is to say
that we use pointers to thread control blocks to refer to threads.

Our fundamental thread-switching mechanism will be the switchFromTo
procedure, which takes two of these thread control block pointers as param-
eters: one specifying the thread that is being switched out of, and one
specifying the next thread, which is being switched into. In our running
example, A and B are pointer variables pointing to the two threads’ control
blocks, which we use alternately in the roles of outgoing thread and next
thread. For example, the program for thread A contains code after instruc-
tion A5 to switch from A to B, and the program for thread B contains code
after instruction B3 to switch from B to A. Of course, this assumes that each
thread knows both its own identity and the identity of the thread to switch
to. Later, we will see how this unrealistic assumption can be eliminated.
For now, though, let’s see how we could write the switchFromTo procedure
so that switchFromTo(A, B) would save the current execution status in-
formation into the structure pointed to by A, read back previously saved
information from the structure pointed to by B, and resume where thread B
left off.

We already saw that the execution status information to save includes
not only a position in the program, often called the program counter (PC') or
instruction pointer (IP), but also the contents of registers. Another critical
part of the execution status for programs compiled with most higher level
language compilers is a portion of the memory used to store a stack, along
with a stack pointer register that indicates the position in memory of the
current top of the stack. You likely have encountered this form of storage in
some prior course—computer organization, programing language principles,
or even introduction to computer science. If not, Appendix [A] provides
the information you will need before proceeding with the remainder of this
chapter.

When a thread resumes execution, it must find the stack the way it left
it. For example, suppose thread A pushes two items on the stack and then
is put on hold for a while, during which thread B executes. When thread A
resumes execution, it should find the two items it pushed at the top of the
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stack—even if thread B did some pushing of its own and has not yet gotten
around to popping. We can arrange for this by giving each thread its own
stack, setting aside a separate portion of memory for each of them. When
thread A is executing, the stack pointer (or SP register) will be pointing
somewhere within thread A’s stack area, indicating how much of that area
is occupied at that time. Upon switching to thread B, we need to save away
A’s stack pointer, just like other registers, and load in thread B’s stack
pointer. That way, while thread B is executing, the stack pointer will move
up and down within B’s stack area, in accordance with B’s own pushes and
pops.

Having discovered this need to have separate stacks and switch stack
pointers, we can simplify the saving of all other registers by pushing them
onto the stack before switching and popping them off the stack after switch-
ing, as shown in Figure We can use this approach to outline the code
for switching from the outgoing thread to the next thread, using outgoing
and next as the two pointers to thread control blocks. (When switching
from A to B, outgoing will be A and next will be B. Later, when switch-
ing back from B to A, outgoing will be B and next will be A.) We will use
outgoing->SP and outgoing->IP to refer to two slots within the structure
pointed to by outgoing, the slot used to save the stack pointer and the one
used to save the instruction pointer. With these assumptions, our code has
the following general form:

push each register on the (outgoing thread’s) stack
store the stack pointer into outgoing->SP

load the stack pointer from next->SP

store label L’s address into outgoing->IP

load in next->IP and jump to that address

pop each register from the (resumed outgoing thread’s) stack

Note that the code before the label (L) is done at the time of switching
away from the outgoing thread, whereas the code after that label is done
later, upon resuming execution when some other thread switches back to
the original one.

This code not only stores the outgoing thread’s stack pointer away, but
also restores the next thread’s stack pointer. Later, the same code will be
used to switch back. Therefore, we can count on the original thread’s stack
pointer to have been restored when control jumps to label L. Thus, when the
registers are popped, they will be popped from the original thread’s stack,
matching the pushes at the beginning of the code.
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Figure 2.8: Saving registers in thread control blocks and per-thread stacks

We can see how this general pattern plays out in a real system, by looking
at the thread-switching code from the Linux operating system for the 1386
architecture. (The 1386 architecture is also known as the x86 or IA-32;
it is a popular processor architecture used in standard personal computer
processors such as the Pentium 4 and the Athlon.) If you don’t want to see
real code, you can skip ahead to the paragraph after the block of assembly
code. However, even if you aren’t familiar with i386 assembly language, you
ought to be able to see how this code matches the preceding pattern.

This is real code extracted from the Linux kernel, though with some
peripheral complications left out. The stack pointer register is named %esp,
and when this code starts running, the registers known as %ebx and %esi
contain the outgoing and next pointers, respectively. Each of those pointers
is the address of a thread control block. The location at offset 812 within
the TCB contains the thread’s instruction pointer, and the location at offset
816 contains the thread’s stack pointer. (That is, these memory locations
contain the instruction pointer and stack pointer to use when resuming that
thread’s execution.) The code surrounding the thread switch does not keep
any important values in most of the other registers; only the special flags
register and the register named %ebp need to be saved and restored. With
that as background, here is the code, with explanatory comments:

pushfl # pushes the flags on outgoing’s stack
pushl %ebp # pushes Yebp on outgoing’s stack
movl %esp,816(%ebx) # stores outgoing’s stack pointer
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movl 816(%esi),%esp
movl $1f,812(%ebx)

# loads next’s stack pointer

# stores label 1’s address,

# where outgoing will resume
pushl 812(%esi) # pushes the instruction address

# where next resumes

ret #
#
#
#

1: popl %ebp

pops and jumps to that address
upon later resuming outgoing,
restores Yebp

popfl and restores the flags

Having seen the core idea of how a processor is switched from running
one thread to running another, we can now eliminate the assumption that
each thread switch contains the explicit names of the outgoing and next
threads. That is, we want to get away from having to name threads A
and B in switchFromTo(A, B). It is easy enough to know which thread is
being switched away from, if we just keep track at all times of the currently
running thread, for example, by storing a pointer to its control block in a
global variable called current. That leaves the question of which thread is
being selected to run next. What we will do is have the operating system
keep track of all the threads in some sort of data structure, such as a list.
There will be a procedure, chooseNextThread (), which consults that data
structure and, using some scheduling policy, decides which thread to run
next. In Chapter [3] I will explain how this scheduling is done; for now, take
it as a black box. Using this tool, one can write a procedure, yield (), which
performs the following four steps:

outgoing = current;

next = chooseNextThread();

current = next; // so the global variable will be right
switchFromTo (outgoing, next);

Now, every time a thread decides it wants to take a break and let other
threads run for a while, it can just invoke yield(). This is essentially
the approach taken by real systems, such as Linux. One complication in a
multiprocessor system is that the current thread needs to be recorded on
a per-processor basis.

Thread switching is often called context switching, because it switches
from the execution context of one thread to that of another thread. Many
authors, however, use the phrase context switching differently, to refer to
switching processes with their protection contexts—a topic we will discuss
in Chapter [7] If the distinction matters, the clearest choice is to avoid the
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ambiguous term context switching and use the more specific thread switching
or process switching.

Thread switching is the most common form of dispatching a thread,
that is, of causing a processor to execute it. The only way a thread can be
dispatched without a thread switch is if a processor is idle.

2.5 Preemptive Multitasking

At this point, I have explained thread switching well enough for systems
that employ cooperative multitasking, that is, where each thread’s program
contains explicit code at each point where a thread switch should occur.
However, more realistic operating systems use what is called preemptive mul-
titasking, in which the program’s code need not contain any thread switches,
yet thread switches will none the less automatically be performed from time
to time.

One reason to prefer preemptive multitasking is because it means that
buggy code in one thread cannot hold all others up. Consider, for example,
a loop that is expected to iterate only a few times; it would seem safe, in
a cooperative multitasking system, to put thread switches only before and
after it, rather than also in the loop body. However, a bug could easily turn
the loop into an infinite one, which would hog the processor forever. With
preemptive multitasking, the thread may still run forever, but at least from
time to time it will be put on hold and other threads allowed to progress.

Another reason to prefer preemptive multitasking is that it allows thread
switches to be performed when they best achieve the goals of responsiveness
and resource utilization. For example, the operating system can preempt a
thread when input becomes available for a waiting thread or when a hard-
ware device falls idle.

Even with preemptive multitasking, it may occasionally be useful for a
thread to voluntarily give way to the other threads, rather than to run as
long as it is allowed. Therefore, even preemptive systems normally provide
yield(). The name varies depending on the API, but often has yield
in it; for example, the pthreads API uses the name sched_yield(). One
exception to this naming pattern is the Win32 API of Microsoft Windows,
which uses the name SwitchToThread() for the equivalent of yield ().

Preemptive multitasking does not need any fundamentally different thread
switching mechanism; it simply needs the addition of a hardware interrupt
mechanism. In case you are not familiar with how interrupts work, I will
first take a moment to review this aspect of hardware organization.
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Normally a processor will execute consecutive instructions one after an-
other, deviating from sequential flow only when directed by an explicit jump
instruction or by some variant such as the ret instruction used in the Linux
code for thread switching. However, there is always some mechanism by
which external hardware (such as a disk drive or a network interface) can
signal that it needs attention. A hardware timer can also be set to demand
attention periodically, such as every millisecond. When an I/O device or
timer needs attention, an interrupt occurs, which is almost as though a
procedure call instruction were forcibly inserted between the currently ex-
ecuting instruction and the next one. Thus, rather than moving on to the
program’s next instruction, the processor jumps off to the special procedure
called the interrupt handler. The interrupt handler, which is part of the
operating system, deals with the hardware device and then executes a re-
turn from interrupt instruction, which jumps back to the instruction that
had been about to execute when the interrupt occurred. Of course, in order
for the program’s execution to continue as expected, the interrupt handler
needs to be careful to save all the registers at the start and restore them
before returning.

Using this interrupt mechanism, an operating system can provide pre-
emptive multitasking. When an interrupt occurs, the interrupt handler first
takes care of the immediate needs, such as accepting data from a network
interface controller or updating the system’s idea of the current time by
one millisecond. Then, rather than simply restoring the registers and ex-
ecuting a return from interrupt instruction, the interrupt handler checks
whether it would be a good time to preempt the current thread and switch
to another. For example, if the interrupt signaled the arrival of data for
which a thread had long been waiting, it might make sense to switch to that
thread. Or, if the interrupt was from the timer and the current thread had
been executing for a long time, it may make sense to give another thread a
chance. These policy decisions are related to scheduling, the topic of Chap-
ter 3] In any case, if the operating system decides to preempt the current
thread, the interrupt handler switches threads using a mechanism such as
the switchFromTo procedure.

2.6 Security and Threads

One premise of this book is that every topic raises its own security issues.
Multithreading is no exception. However, this section will be quite brief,
because with the material covered in this chapter, I can present only the
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security problems connected with multithreading, not the solutions. So that
I do not divide problems from their solutions, this section provides only a
thumbnail sketch, leaving serious consideration of the problems and their
solutions to the chapters that introduce the necessary tools.

Security issues arise when some threads are unable to execute because
others are hogging the computer’s attention. Security issues also arise be-
cause of unwanted interactions between threads. Unwanted interactions
include a thread writing into storage that another thread is trying to use or
reading from storage another thread considers confidential. These problems
are most likely to arise if the programmer has a difficult time understanding
how the threads may interact with one another.

The security section in Chapter |3|addresses the problem of some threads
monopolizing the computer. The security sections in Chapters [ [5 and [7]
address the problem of controlling threads’ interaction. Each of these chap-
ters also has a strong emphasis on design approaches that make interactions
easy to understand, thereby minimizing the risks that arise from incomplete
understanding.

Exercises

2.1 Based on the examples in Section [2.2] name at least one difference be-
tween the sleep procedure in the POSIX API and the Thread.sleep
method in the Java APIL

2.2 Give at least three more examples, beyond those given in the text,
where it would be useful to run more concurrent threads on a com-
puter than that computer’s number of processors. Indicate how your
examples fit the general reasons to use concurrency listed in the text.

2.3 Suppose thread A goes through a loop 100 times, each time performing
one disk I/O operation, taking 10 milliseconds, and then some compu-
tation, taking 1 millisecond. While each 10-millisecond disk operation
is in progress, thread A cannot make any use of the processor. Thread
B runs for 1 second, purely in the processor, with no I/O. One mil-
lisecond of processor time is spent each time the processor switches
threads; other than this switching cost, there is no problem with the
processor working on thread B during one of thread A’s I/O opera-
tions. (The processor and disk drive do not contend for memory access
bandwidth, for example.)
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(a)

(b)
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Suppose the processor and disk work purely on thread A until
its completion, and then the processor switches to thread B and
runs all of that thread. What will the total elapsed time be?

Suppose the processor starts out working on thread A, but every
time thread A performs a disk operation, the processor switches
to B during the operation and then back to A upon the disk
operation’s completion. What will the total elapsed time be?

2.4 Consider a uniprocessor system where each arrival of input from an
external source triggers the creation and execution of a new thread,
which at its completion produces some output. We are interested in
the response time from triggering input to resulting output.

(a)

Input arrives at time 0 and again after 1 second, 2 seconds, and
so forth. Each arrival triggers a thread that takes 600 millisec-
onds to run. Before the thread can run, it must be created and
dispatched, which takes 10 milliseconds. What is the average
response time for these inputs?

Now a second source of input is added, with input arriving at
times 0.1 seconds, 1.1 seconds, 2.1 seconds, and so forth. These
inputs trigger threads that only take 100 milliseconds to run, but
they still need 10 milliseconds to create and dispatch. When
an input arrives, the resulting new thread is not created or dis-
patched until the processor is idle. What is the average response
time for this second class of inputs? What is the combined aver-
age response time for the two classes?

Suppose we change the way the second class of input is handled.
When the input arrives, the new thread is immediately created
and dispatched, even if that preempts an already running thread.
When the new thread completes, the preempted thread resumes
execution after a 1 millisecond thread switching delay. What is
the average response time for each class of inputs? What is the
combined average for the two together?

2.5 When control switches away from a thread and later switches back
to that thread, the thread resumes execution where it left off. Simi-
larly, when a procedure calls a subroutine and later the subroutine re-
turns, execution picks back up where it left off in the calling procedure.
Given this similarity, what is the essential difference between thread
switching and subroutine call/return? You saw that each thread has
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a separate stack, each in its own area of memory. Why is this not
necessary for subroutine invocations?

Programming Projects

2.1

2.2

2.3

2.4

If you program in C, read the documentation for pthread_cancel. Us-
ing this information and the model provided in Figure [2.4] on page
write a program where the initial (main) thread creates a second
thread. The main thread should read input from the keyboard, wait-
ing until the user presses the Enter key. At that point, it should kill
off the second thread and print out a message reporting that it has
done so. Meanwhile, the second thread should be in an infinite loop,
each time around sleeping five seconds and then printing out a mes-
sage. Try running your program. Can the sleeping thread print its
periodic messages while the main thread is waiting for keyboard in-
put? Can the main thread read input, kill the sleeping thread, and
print a message while the sleeping thread is in the early part of one of
its five-second sleeps?

If you program in Java, read the documentation for the stop method in
the Thread class. (Ignore the information about it being deprecated.
That will make sense only after you read Chapter [4] of this book.)
Write the program described in Programming Project except do
so in Java. You can use the program shown in Figure on page
as a model.

Read the API documentation for some programming language other
than C, C4++, or Java to find out how to spawn off a thread and how
to sleep. Write a program in this language equivalent to the Java
and C example programs in Figures [2.3] and [2.4] on pages [25] and
Then do the equivalent of Programming Projects and using the
language you have chosen.

If you program in C under Microsoft Windows, you can use the native
Win32 API instead of the portable pthreads API. Read the docu-
mentation of CreateThread and Sleep and modify the program of
Figure [2.4] on page |26 to use these procedures.
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Exploration Projects

2.1 Try the experiment of running a disk-intensive process and a processor-
intensive process concurrently. Write a report carefully explaining
what you did and in which hardware and software system context you
did it, so that someone else could replicate your results. Your report
should show how the elapsed time for the concurrent execution com-
pared with the times from sequential execution. Be sure to do multiple
trials and to reboot the system before each run so as to eliminate ef-
fects that come from keeping disk data in memory for re-use. If you
can find documentation for any performance-monitoring tools on your
system, which would provide information such as the percentage of
CPU time used or the number of disk I/O operations per second, you
can include this information in your report as well.

2.2 Early versions of Microsoft Windows and Mac OS used cooperative
multitasking. Use the web, or other sources of information, to find out
when each switched to preemptive multitasking. Can you find and
summarize any examples of what was written about this change at
the time?

2.3 How frequently does a system switch threads? You can find this out
on a Linux system by using the vmstat program. Read the man page
for vmstat, and then run it to find the number of context switches per
second. Write a report in which you carefully explain what you did
and the hardware and software system context in which you did it, so
that someone else could replicate your results.

Notes

The idea of executing multiple threads concurrently seems to have occurred
to several people (more or less concurrently) in the late 1950s. They did not
use the word thread, however. For example, a 1959 article by E. F. Codd
et al. [34] stated that “the second form of parallelism, which we shall call
nonlocal, provides for concurrent execution of instructions which need not
be neighbors in an instruction stream, but which may belong, if you please,
to entirely separate and unrelated programs.” From the beginning, authors
were aware of both reasons for using concurrency that I have emphasized
(resource utilization and responsiveness). The same article by Codd et al.,
for example, reports that “one object of concurrently running tasks which
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belong to different (perhaps totally unrelated) programs is to achieve a more
balanced loading of the facilities than would be possible if all the tasks
belonged to a single program. Another object is to achieve a specified real-
time response in a situation in which messages, transactions, etc., are to be
processed on-line.”

I mentioned that an operating system may dedicate a thread to preemp-
tively zeroing out memory. One example of this is the zero page thread in
Microsoft Windows. See Russinovich and Solomon’s book [123] for details.

I extracted the Linux thread switching code from version 2.6.0-test1 of
the kernel. Details (such as the offsets 812 and 816) may differ in other
versions. The kernel source code is written in a combination of assembly
language and C, contained in include/asm-i386/system.h as included into
kernel/sched.c. To obtain pure assembly code, I fed the source through
the gcc compiler. Also, the ret instruction is a simplification; the actual
kernel at that point jumps to a block of code that ends with the ret in-
struction.

My brief descriptions of the POSIX and Java APIs are intended only
as concrete illustrations of broader concepts, not as a replacement for doc-
umentation of those APIs. You can find the official documentation on the
web at http: // www.uniz.org and hitp: // java.sun.com, respectively.


http://www.unix.org
http://java.sun.com
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Chapter 3

Scheduling

3.1 Introduction

In Chapter [2| you saw that operating systems support the concurrent execu-
tion of multiple threads by repeatedly switching each processor’s attention
from one thread to another. This switching implies that some mechanism,
known as a scheduler, is needed to choose which thread to run at each time.
Other system resources may need scheduling as well; for example, if several
threads read from the same disk drive, a disk scheduler may place them in
order. For simplicity, I will consider only processor scheduling. Normally,
when people speak of scheduling, they mean processor scheduling; similarly,
the scheduler is understood to mean the processor scheduler.

A scheduler should make decisions in a way that keeps the computer
system’s users happy. For example, picking the same thread all the time
and completely ignoring the others would generally not be a good scheduling
policy. Unfortunately, there is no one policy that will make all users happy
all the time. Sometimes the reason is as simple as different users having
conflicting desires: for example, user A wants task A completed quickly,
while user B wants task B completed quickly. Other times, though, the
relative merits of different scheduling policies will depend not on whom you
ask, but rather on the context in which you ask. As a simple example, a
student enrolled in several courses is unlikely to decide which assignment to
work on without considering when the assignments are due.

Because scheduling policies need to respond to context, operating sys-
tems provide scheduling mechanisms that leave the user in charge of more
subtle policy choices. For example, an operating system may provide a
mechanism for running whichever thread has the highest numerical priority,

45
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while leaving the user the job of assigning priorities to the threads. Even so,
no one mechanism (or general family of policies) will suit all goals. There-
fore, I spend much of this chapter describing the different goals that users
have for schedulers and the mechanisms that can be used to achieve those
goals, at least approximately. Particularly since users may wish to achieve
several conflicting goals, they will generally have to be satisfied with “good
enough.”

Before I get into the heavily values-laden scheduling issues, though, I
will present one goal everyone can agree upon: A thread that can make
productive use of a processor should always be preferred over one that is
waiting for something, such as the completion of a time delay or the arrival
of input. In Section you will see how schedulers arrange for this by
keeping track of each thread’s state and scheduling only those that can run
usefully.

Following the section on thread states, I devote Section [3.3]entirely to the
question of users’ goals, independent of how they are realized. Then I spend
one section apiece on three broad families of schedulers, examining for each
not only how it works but also how it can serve users’ goals. These three
families of schedulers are those based on fixed thread priorities (Section ,
those based on dynamically adjusted thread priorities (Section , and
those based less on priorities than on controlling each thread’s proportional
share of processing time (Section . This three-way division is not the
only possible taxonomy of schedulers, but it will serve to help me introduce
several operating systems’ schedulers and explain the principles behind them
while keeping in mind the context of users’ goals. After presenting the
three families of schedulers, I will briefly remark in Section on the role
scheduling plays in system security. The chapter concludes with exercises,
programming and exploration projects, and notes.

3.2 Thread States

A typical thread will have times when it is waiting for some event, unable
to execute any useful instructions until the event occurs. Consider a web
server that reads a client’s request from the network, reads the requested
web page from disk, and then sends the page over the network to the client.
Initially the server thread is waiting for the network interface to have some
data available. If the server thread were scheduled on a processor while it
was waiting, the best it could do would be to execute a loop that checked
over and over whether any data has arrived—hardly a productive use of the
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processor’s time. Once data is available from the network, the server thread
can execute some useful instructions to read the bytes in and check whether
the request is complete. If not, the server needs to go back to waiting for
more data to arrive. Once the request is complete, the server will know
what page to load from disk and can issue the appropriate request to the
disk drive. At that point, the thread once again needs to wait until such
time as the disk has completed the requisite physical movements to locate
the page. To take a different example, a video display program may display
one frame of video and then wait some fraction of a second before displaying
the next so that the movie doesn’t play too fast. All the thread could do
between frames would be to keep checking the computer’s real-time clock
to see whether enough time had elapsed—again, not a productive use of the
Processor.

In a single-thread system, it is plausible to wait by executing a loop
that continually checks for the event in question. This approach is known as
busy waiting. However, a modern general-purpose operating system will have
multiple threads competing for the processor. In this case, busy waiting is a
bad idea because any time that the scheduler allocates to the busy-waiting
thread is lost to the other threads without achieving any added value for
the thread that is waiting.

Therefore, operating systems provide an alternative way for threads to
wait. The operating system keeps track of which threads can usefully run
and which are waiting. The system does this by storing runnable threads in
a data structure called the run queue and waiting threads in wait queues,
one per reason for waiting. Although these structures are conventionally
called queues, they may not be used in the first-in, first-out style of true
queues. For example, there may be a list of threads waiting for time to
elapse, kept in order of the desired time. Another example of a wait queue
would be a set of threads waiting for the availability of data on a particular
network communication channel.

Rather than executing a busy-waiting loop, a thread that wants to wait
for some event notifies the operating system of this intention. The operating
system removes the thread from the run queue and inserts the thread into
the appropriate wait queue, as shown in Figure 3.1} Because the scheduler
considers only threads in the run queue for execution, it will never select
the waiting thread to run. The scheduler will be choosing only from those
threads that can make progress if given a processor on which to run.

In Chapter [2| I mentioned that the arrival of a hardware interrupt can
cause the processor to temporarily stop executing instructions from the cur-
rent thread and to start executing instructions from the operating system’s
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Run queue Wait queue

Originally running thread,
needs to wait

Run queue Wait queue
Newly selected Newly waiting
to run

Figure 3.1: When a thread needs to wait, the operating system moves it
from the run queue to a wait queue. The scheduler selects one of the threads
remaining in the run queue to dispatch, so it starts running.
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interrupt handler. One of the services this interrupt handler can perform
is determining that a waiting thread doesn’t need to wait any longer. For
example, the computer’s real-time clock may be configured to interrupt the
processor every one hundredth of a second. The interrupt handler could
check the first thread in the wait queue of threads that are waiting for spe-
cific times to elapse. If the time this thread was waiting for has not yet
arrived, no further threads need to be checked because the threads are kept
in time order. If, on the other hand, the thread has slept as long as it re-
quested, then the operating system can move it out of the list of sleeping
threads and into the run queue, where the thread is available for scheduling.
In this case, the operating system should check the next thread similarly, as
illustrated in Figure 3.2

Putting together the preceding information, there are at least three dis-
tinct states a thread can be in:

e Runnable (but not running), awaiting dispatch by the scheduler
e Running on a processor
o Waiting for some event

Some operating systems may add a few more states in order to make finer
distinctions (waiting for one kind of event versus waiting for another kind)
or to handle special circumstances (for example, a thread that has finished
running, but needs to be kept around until another thread is notified). For
simplicity, I will stick to the three basic states in the foregoing list. At
critical moments in the thread’s lifetime, the operating system will change
the thread’s state. These thread state changes are indicated in Figure [3.3
Again, a real operating system may add a few additional transitions; for
example, it may be possible to forcibly terminate a thread, even while it is
in a waiting state, rather than having it terminate only of its own accord
while running.

3.3 Scheduling Goals

Users expect a scheduler to maximize the computer system’s performance
and to allow them to exert control. Each of these goals can be refined into
several more precise goals, which I explain in the following subsections. High
performance may mean high throughput (Section or fast response
time (Section , and user control may be expressed in terms of urgency,
importance, or resource allocation (Section .
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Run queue Wait queue
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Past, Present, Future, Don’t
move move leave even
check

Figure 3.2: When the operating system handles a timer interrupt, all threads
waiting for times that have now past are moved to the run queue. Because
the wait queue is kept in time order, the scheduler need only check threads
until it finds one waiting for a time still in the future. In this figure, times
are shown on a human scale for ease of understanding.

Initiation
yield or preemption

o

dispatch
Runnable Running

Waiting

Termination

Figure 3.3: Threads change states as shown here. When a thread is ini-
tially created, it is runnable, but not actually running on a processor until
dispatched by the scheduler. A running thread can voluntarily yield the
processor or can be preempted by the scheduler in order to run another
thread. In either case, the formerly running thread returns to the runnable
state. Alternatively, a running thread may wait for an external event before
becoming runnable again. A running thread may also terminate.
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3.3.1 Throughput

Many personal computers have far more processing capability available than
work to do, and they largely sit idle, patiently waiting for the next keystroke
from a user. However, if you look behind the scenes at a large Internet
service, such as Google, you'll see a very different situation. Large rooms
filled with rack after rack of computers are necessary in order to keep up
with the pace of incoming requests; any one computer can cope only with
a small fraction of the traffic. For economic reasons, the service provider
wants to keep the cluster of servers as small as possible. Therefore, the
throughput of each server must be as high as possible. The throughput is the
rate at which useful work, such as search transactions, is accomplished. An
example measure of throughput would be the number of search transactions
completed per second.

Maximizing throughput certainly implies that the scheduler should give
each processor a runnable thread on which to work, if at all possible. How-
ever, there are some other, slightly less obvious, implications as well. Re-
member that a computer system has more components than just processors.
It also has I/O devices (such as disk drives and network interfaces) and
a memory hierarchy, including cache memories. Only by using all these
resources efficiently can a scheduler maximize throughput.

I already mentioned I/O devices in Chapter [2| with the example of a
computationally intensive graphics rendering program running concurrently
with a disk-intensive virus scanner. I will return to this example later in the
current chapter to see one way in which the two threads can be efficiently
interleaved. In a nutshell, the goal is to keep both the processor and the disk
drive busy all the time. If you have ever had an assistant for a project, you
may have some appreciation for what this entails: whenever your assistant
was in danger of falling idle, you had to set your own work aside long enough
to explain the next assignment. Similarly, the processor must switch threads
when necessary to give the disk more work to do.

Cache memories impact throughput-oriented scheduling in two ways,
though one arises only in multiprocessor systems. In any system, switching
between different threads more often than necessary will reduce throughput
because processor time will be wasted on the overhead of context switching,
rather than be available for useful work. The main source of this context-
switching overhead is not the direct cost of the switch itself, which entails
saving a few registers out and loading them with the other thread’s values.
Instead, the big cost is in reduced cache memory performance, for reasons I
will explain in a moment. On multiprocessor systems a second issue arises:
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a thread is likely to run faster when scheduled on the same processor as it
last ran on. Again, this results from cache memory effects. To maximize
throughput, schedulers therefore try to maintain a specific processor affinity
for each thread, that is, to consistently schedule the thread on the same
processor unless there are other countervailing considerations.

You probably learned in a computer organization course that cache mem-
ories provide fast storage for those addresses that have been recently ac-
cessed or that are near to recently accessed locations. Because programs
frequently access the same locations again (that is, exhibit temporal locality)
or access nearby locations (that is, exhibit spatial locality), the processor will
often be able to get its data from the cache rather than from the slower main
memory. Now suppose the processor switches threads. The new thread will
have its own favorite memory locations, which are likely to be quite different.
The cache memory will initially suffer many misses, slowing the processor to
the speed of the main memory, as shown in Figure Over time, however,
the new thread’s data will displace the data from the old thread, and the
performance will improve. Suppose that just at the point where the cache
has adapted to the second thread, the scheduler were to decide to switch
back. Clearly this is not a recipe for high-throughput computing.

On a multiprocessor system, processor affinity improves throughput in a
similar manner by reducing the number of cycles the processor stalls waiting
for data from slower parts of the memory hierarchy. Each processor has its
own local cache memory. If a thread resumes running on the same processor
on which it previously ran, there is some hope it will find its data still in
the cache. At worst, the thread will incur cache misses and need to fetch
the data from main memory. The phrase “at worst” may seem odd in the
context of needing to go all the way to main memory, but in a multiprocessor
system, fetching from main memory is not the highest cost situation.

Memory accesses are even more expensive if they refer to data held in
another processor’s cache. That situation can easily arise if the thread is
dispatched on a different processor than it previously ran on, as shown in
Figure[3.5In this circumstance, the multiprocessor system’s cache coherence
protocol comes into play. Typically, this means first transferring the data
from the old cache to the main memory and then transferring it from the
main memory to the new cache. This excess coherence traffic (beyond what
is needed for blocks shared by multiple threads) reduces throughput if the
scheduler has not arranged for processor affinity.
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Figure 3.4: When a processor has been executing thread A for a while, the
cache will mostly hold thread A’s values, and the cache hit rate may be
high. If the processor then switches to thread B, most memory accesses will
miss in the cache and go to the slower main memory.
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Figure 3.5: If processor 1 executes thread A and processor 2 executes thread
B, after a while each cache will hold the corresponding thread’s values. If
the scheduler later schedules each thread on the opposite processor, most
memory accesses will miss in the local cache and need to use the cache
coherence protocol to retrieve data from the other cache.
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3.3.2 Response Time

Other than throughput, the principle measure of a computer system’s per-
formance is response time: the elapsed time from a triggering event (such as
a keystroke or a network packet’s arrival) to the completed response (such
as an updated display or the transmission of a reply packet). Notice that a
high-performance system in one sense may be low-performance in the other.
For example, frequent context switches, which are bad for throughput, may
be necessary to optimize response time. Systems intended for direct inter-
action with a single user tend to be optimized for response time, even at the
expense of throughput, whereas centralized servers are usually designed for
high throughput as long as the response time is kept tolerable.

If an operating system is trying to schedule more than one runnable
thread per processor and if each thread is necessary in order to respond
to some event, then response time inevitably involves tradeoffs. Respond-
ing more quickly to one event by running the corresponding thread means
responding more slowly to some other event by leaving its thread in the
runnable state, awaiting later dispatch. One way to resolve this trade-off is
by using user-specified information on the relative urgency or importance
of the threads, as I describe in Section [3.3.3] However, even without that
information, the operating system may be able to do better than just shrug
its virtual shoulders.

Consider a real world situation. You get an email from a long-lost friend,
reporting what has transpired in her life and asking for a corresponding
update on what you have been doing for the last several years. You have
barely started writing what will inevitably be a long reply when a second
email message arives, from a close friend, asking whether you want to go out
tonight. You have two choices. One is to finish writing the long letter and
then reply “sure” to the second email. The other choice is to temporarily
put your long letter aside, send off the one-word reply regarding tonight,
and then go back to telling the story of your life. Either choice extends your
response time for one email in order to keep your response time for the other
email as short as possible. However, that symmetry doesn’t mean there is
no logical basis for choice. Prioritizing the one-word reply provides much
more benefit to its response time than it inflicts harm on the other, more
time-consuming task.

If an operating system knows how much processor time each thread will
need in order to respond, it can use the same logic as in the email example
to guide its choices. The policy of Shortest Job First (SJF') scheduling
minimizes the average response time, as you can demonstrate in Exercise|3.5
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This policy dates back to batch processing systems, which processed a single
large job of work at a time, such as a company’s payroll or accounts payable.
System operators could minimize the average turnaround time from when
a job was submitted until it was completed by processing the shortest one
first. The operators usually had a pretty good idea how long each job would
take, because the same jobs were run on a regular basis. However, the reason
why you should be interested in SJF is not for scheduling batch jobs (which
you are unlikely to encounter), but as background for understanding how a
modern operating system can improve the responsiveness of threads.

Normally an operating system won’t know how much processor time each
thread will need in order to respond. One solution is to guess, based on past
behavior. The system can prioritize those threads that have not consumed
large bursts of processor time in the past, where a burst is the amount of
processing done between waits for external events. Another solution is for
the operating system to hedge its bets, so that that even if it doesn’t know
which thread needs to run only briefly, it won’t sink too much time into
the wrong thread. By switching frequently between the runnable threads,
if any one of them needs only a little processing time, it will get that time
relatively soon even if the other threads involve long computations.

The succesfulness of this hedge depends not only on the duration of
the time slices given to the threads, but also on the number of runnable
threads competing for the processor. On a lightly loaded system, frequent
switches may suffice to ensure responsiveness. By contrast, consider a system
that is heavily loaded with many long-running computations, but that also
occasionally has an interactive thread that needs just a little processor time.
The operating system can ensure responsiveness only by identifying and
prioritizing the interactive thread, so that it doesn’t have to wait in line
behind all the other threads’ time slices. However brief each of those time
slices is, if there are many of them, they will add up to a substantial delay.

3.3.3 Urgency, Importance, and Resource Allocation

The goals of high throughput and quick response time do not inherently
involve user control over the scheduler; a sufficiently smart scheduler might
make all the right decisions on its own. On the other hand, there are user
goals that revolve precisely around the desire to be able to say the following:
“This thread is a high priority; work on it.” I will explain three different
notions that often get confusingly lumped under the heading of priority.
To disentangle the confusion, I will use different names for each of them:
urgency, importance, and resource allocation. 1 will reserve the word priority
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for my later descriptions of specific scheduling mechanisms, where it may
be used to help achieve any of the goals: throughput, responsiveness, or the
control of urgency, importance, or resource allocation.

A task is urgent if it needs to be done soon. For example, if you have
a small homework assignment due tomorrow and a massive term paper to
write within the next two days, the homework is more urgent. That doesn’t
necessarily mean it would be smart for you to prioritize the homework; you
might make a decision to take a zero on the homework in order to free up
more time for the term paper. If so, you are basing your decision not only
on the two tasks’ urgency, but also on their importance; the term paper is
more important. In other words, importance indicates how much is at stake
in accomplishing a task in a timely fashion.

Importance alone is not enough to make good scheduling decisions either.
Suppose the term paper wasn’t due until a week from now. In that case, you
might decide to work on the homework today, knowing that you would have
time to write the paper starting tomorrow. Or, to take a third example,
suppose the term paper (which you have yet to even start researching) was
due in an hour, with absolutely no late papers accepted. In that case, you
might realize it was hopeless to even start the term paper, and so decide to
put your time into the homework instead.

Although urgency and importance are quite different matters, the pre-
cision with which a user specifies urgency will determine how that user can
control scheduling to reflect importance. If tasks have hard deadlines, then
importance can be dealt with as in the homework example—through a pro-
cess of ruthless triage. Here, importance measures the cost of dropping a
task entirely. On the other hand, the deadlines may be “soft,” with the
importance measuring how bad it is for each task to be late. At the other
extreme, the user might provide no information at all about urgency, instead
demanding all results “as soon as possible.” In this case, a high importance
task might be one to work on whenever possible, and a low importance
task might be one to fill in the idle moments, when there is nothing more
important to do.

Other than urgency and importance, another way in which users may
wish to express the relationship between different threads is by controlling
what fraction of the available processing resources they are allocated. Some-
times, this is a matter of fairness. For example, if two users are sharing a
computer, it might be fair to devote half of the processing time to one
user’s threads and the other half of the processing time to the other user’s
threads. In other situations, a specific degree of inequity may be desired.
For example, a web hosting company may sell shares of a large server to
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small companies for their web sites. A company that wants to provide good
service to a growing customer base might choose to buy two shares of the
web server, expecting to get twice as much of the server’s processing time
in return for a larger monthly fee.

When it was common for thousands of users, such as university students,
to share a single computer, considerable attention was devoted to so-called
fair-share scheduling, in which users’ consumption of the shared processor’s
time was balanced out over relatively long time periods, such as a week.
That is, a user who did a lot of computing early in the week might find his
threads allocated only a very small portion of the processor’s time later in
the week, so that the other users would have a chance to catch up. A fair
share didn’t have to mean an equal share; the system administrator could
grant differing allocations to different users. For example, students taking
an advanced course might receive more computing time than introductory
students.

With the advent of personal computers, fair-share scheduling has fallen
out of favor, but another resource-allocation approach, proportional-share
scheduling, is still very much alive. (For example, you will see that the
Linux scheduler is largely based on the proportional-share scheduling idea.)
The main reason why I mention fair-share scheduling is to distinguish it
from proportional-share scheduling, because the two concepts have names
that are so confusingly close.

Proportional-share scheduling balances the processing time given to threads
over a much shorter time scale, such as a second. The idea is to focus only
on those threads that are runnable and to allocate processor time to them
in proportion with the shares the user has specified. For example, suppose
that I have a big server on which three companies have purchased time.
Company A pays more per month than companies B and C, so I have given
two shares to company A and only one share each to companies B and C.
Suppose, for simplicity, that each company runs just one thread, which I
will call thread A, B, or C, correspondingly. If thread A waits an hour for
some input to arrive over the network while threads B and C are runnable, I
will give half the processing time to each of B and C, because they each have
one share. When thread A’s input finally arrives and the thread becomes
runnable, it won’t be given an hour-long block of processing time to “catch
up” with the other two threads. Instead, it will get half the processor’s time,
and threads B and C will each get one quarter, reflecting the 2:1:1 ratio of
their shares.

The simplest sort of proportional-share scheduling allows shares to be
specified only for individual threads, such as threads A, B, and C in the pre-
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ceding example. A more sophisticated version allows shares to be specified
collectively for all the threads run by a particular user or otherwise belong-
ing to a logical group. For example, each user might get an equal share of
the processor’s time, independent of how many runnable threads the user
has. Users who run multiple threads simply subdivide their shares of the
processing time. Similarly, in the example where a big server is contracted
out to multiple companies, I would probably want to allow each company
to run multiple threads while still controlling the overall resource allocation
among the companies, not just among the individual threads.

Linux’s scheduler provides a flexible group scheduling facility. Threads
can be treated individually or they can be placed into groups either by user
or in any other way that the system administrator chooses. Up through
version 2.6.37, the default was for threads to receive processor shares indi-
vidually. However, this default changed in version 2.6.38. The new default
is to automatically establish a group for each terminal window. That way,
no matter how many CPU-intensive threads are run from within a par-
ticular terminal window, they won’t greatly degrade the system’s overall
performance. (To be completely precise, the automatically created groups
correspond not to terminal windows, but to groupings of processes known
as sessions. Normally each terminal window corresponds to a session, but
there are also other ways sessions can come into existence. Sessions are not
explained further in this book.)

Having learned about urgency, importance, and resource allocation, one
important lesson is that without further clarification, you cannot understand
what a user means by a sentence such as “thread A is higher priority than
thread B.” The user may want you to devote twice as much processing time
to A as to B, because A is higher priority in the sense of meriting a larger
proportion of resources. Then again, the user may want you to devote almost
all processing time to A, running B only in the spare moments when A goes
into a waiting state, because A is higher priority in the sense of greater
importance, greater urgency, or both.

Unfortunately, many operating systems have traditionally not given the
user a rich enough vocabulary to directly express more than one of these
goals. For example, the UNIX family of operating systems (including Mac
OS X and Linux) provides a way for the user to specify the niceness of a
thread. The word nice should be understood in the sense that a very nice
thread is one that is prone to saying, “Oh no, that’s all right, you go ahead
of me, I can wait.” In other words, a high niceness is akin to a low priority.
However, different members of this operating system family interpret this
single parameter, niceness, differently.
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The original tradition, to which Mac OS X still adheres, is that niceness
is an expression of importance; a very nice thread should normally only run
when there is spare processor time. Some newer UNIX-family schedulers,
such as in Linux, instead interpret the same niceness number as an expression
of resource allocation proportion, with nicer threads getting proportionately
less processor time. It is pointless arguing which of these interpretations of
niceness is the right one; the problem is that users have two different things
they may want to tell the scheduler, and they will never be able to do so
with only one control knob.

Luckily, some operating systems have provided somewhat more expres-
sive vocabularies for user control. For example, Mac OS X allows the user
to either express the urgency of a thread (through a deadline and related in-
formation) or its importance (though a niceness). These different classes of
threads are placed in a hierarchicial relationship; the assumption is that all
threads with explicit urgency information are more important than any of
the others. Similarly, some proportional-share schedulers, including Linux’s,
use niceness for proportion control, but also allow threads to be explicitly
flagged as low-importance threads that will receive almost no processing
unless a processor is otherwise idle.

As a summary of this section, Figure [3.6] shows a taxonomy of the
scheduling goals I have described. Figure [3.7] previews the scheduling mech-
anisms I describe in the next three sections, and Figure |3.8| shows which
goals each of them is designed to satisfy.

Scheduling goals

/

Performance Control

N

Throughput Response Urgency Importance Resource
time allocation

Figure 3.6: A user may want the scheduler to improve system performance or
to allow user control. Two different performance goals are high throughput
and fast response time. Three different ways in which a user may exert
control are by specifying threads’ urgency, importance, or resource share.
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Scheduling mechanisms

TN

Priority Proportional share
(Section 3.6)

Fixed priority Dynamic priority
(Section 3.4)

Earliest Deadline Decay usage
First (Section 3.5.1) (Section 3.5.2)

Figure 3.7: A scheduling mechanism may be based on always running the
highest priority thread, or on pacing the threads to each receive a propor-
tional share of processor time. Priorities may be fixed, or they may be
adjusted to reflect either the deadline by which a thread must finish or the
thread’s amount of processor usage.

Mechanism Goals
fixed priority urgency, importance
Earliest Deadline First urgency
decay usage importance, throughput, response time
proportional share resource allocation

Figure 3.8: For each scheduling mechanism I present, I explain how it can
satisfy one or more of the scheduling goals.



3.4. FIXED-PRIORITY SCHEDULING 61

3.4 Fixed-Priority Scheduling

Many schedulers use a numerical priority for each thread; this controls which
threads are selected for execution. The threads with higher priority are
selected in preference to those with lower priority. No thread will ever be
running if another thread with higher priority is not running, but is in the
runnable state. The simplest way the priorities can be assigned is for the user
to manually specify the priority of each thread, generally with some default
value if none is explicitly specified. Although there may be some way for
the user to manually change a thread’s priority, one speaks of fixed-priority
scheduling as long as the operating system never automatically adjusts a
thread’s priority.

Fixed-priority scheduling suffices to achieve user goals only under limited
circumstances. However, it is simple, so many real systems offer it, at least
as one option. For example, both Linux and Microsoft Windows allow fixed-
priority scheduling to be selected for specific threads. Those threads take
precedence over any others, which are scheduled using other means I discuss
in Sections and In fact, fixed-priority scheduling is included as a
part of the international standard known as POSIX, which many operating
systems attempt to follow.

As an aside about priorities, whether fixed or otherwise, it is important
to note that some real systems use smaller priority numbers to indicate more
prefered threads and larger priority numbers to indicate those that are less
prefered. Thus, a “higher priority” thread may actually be indicated by a
lower priority number. In this book, I will consistenty use “higher priority”
and “lower priority” to mean more and less prefered, independent of how
those are encoded as numbers by a particular system.

In a fixed-priority scheduler, the run queue can be kept in a data struc-
ture ordered by priority. If you have studied algorithms and data structures,
you know that in theory this could be efficiently done using a clever repre-
sentation of a priority queue, such as a binary heap. However, in practice,
most operating systems use a much simpler structure, because they use only
a small range of integers for the priorities. Thus, it suffices to keep an array
with one entry per possible priority. The first entry contains a list of threads
with the highest priority, the second entry contains a list of threads with
the next highest priority, and so forth.

Whenever a processor becomes idle because a thread has terminated
or entered a waiting state, the scheduler dispatches a runnable thread of
highest available priority. The scheduler also compares priorities when a
thread becomes runnable because it is newly initiated or because it is done
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waiting. If the newly runnable thread has higher priority than a running
thread, the scheduler preempts the running thread of lower priority; that is,
the lower-priority thread ceases to run and returns to the run queue. In its
place, the scheduler dispatches the newly runnable thread of higher priority.

Two possible strategies exist for dealing with ties, in which two or more
runnable threads have equally high priority. (Assume there is only one
processor on which to run them, and that no thread has higher priority than
they do.) One possibility is to run the thread that became runnable first
until it waits for some event or chooses to voluntarily yield the processor.
Only then is the second, equally high-priority thread dispatched. The other
possibility is to share the processor’s attention between those threads that
are tied for highest priority by alternating among them in a round-robin
fashion. That is, each thread runs for some small interval of time (typically
tens or hundreds of milliseconds), and then it is preempted from the clock
interrupt handler and the next thread of equal priority is dispatched, cycling
eventually back to the first of the threads. The POSIX standard provides
for both of these options; the user can select either a first in, first out (FIFO)
policy or a round robin (RR) policy.

Fixed-priority scheduling is not viable in an open, general-purpose envi-
ronment where a user might accidentally or otherwise create a high-priority
thread that runs for a long time. However, in an environment where all
the threads are part of a carefully quality-controlled system design, fixed-
priority scheduling may be a reasonable choice. In particular, it is frequently
used for so-called hard-real-time systems, such as those that control the flaps
on an airplane’s wings.

Threads in these hard-real-time systems normally perform periodic tasks.
For example, one thread may wake up every second to make a particular
adjustment in the flaps and then go back to sleep for the remainder of the
second. Each of these tasks has a deadline by which it must complete; if the
deadline is missed, the program has failed to meet its specification. (That
is what is meant by “hard real time.”) In the simplest case, the deadline
is the same as the period; for example, each second’s adjustment must be
done before the second is up. The designers of a system like this know all
the threads that will be running and carefully analyze the ensemble to make
sure no deadlines will ever be missed. In order to do this, the designers need
to have a worst-case estimate of how long each thread will run, per period.

I can illustrate the analysis of a fixed-priority schedule for a hard-real-
time system with some simple examples, which assume that the threads are
all periodic, with deadlines equal to their periods, and with no interactions
among them other than the competition for a single processor. To see how
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the same general ideas can be extended to cases where these assumptions
don’t hold, you could read a book devoted specifically to real-time systems.

Two key theorems, proved by Liu and Layland in a 1973 article, make it
easy to analyze such a periodic hard-real-time system under fixed-priority
scheduling:

e If the threads will meet their deadlines under any fixed priority as-
signment, then they will do so under an assignment that prioritizes
threads with shorter periods over those with longer periods. This pol-
icy is known as rate-monotonic scheduling.

e To check that deadlines are met, it suffices to consider the worst-
case situation, which is that all the threads’ periods start at the same
moment.

Therefore, to test whether any fixed-priority schedule is feasible, assign prior-
ities in the rate-monotic fashion. Assume all the threads are newly runnable
at time 0 and plot out what happens after that, seeing whether any deadline
is missed.

To test the feasibility of a real-time schedule, it is conventional to use
a Gantt chart. This can be used to see whether a rate-monotonic fixed-
priority schedule will work for a given set of threads. If not, some scheduling
approach other than fixed priorities may work, or it may be necessary to
redesign using less demanding threads or hardware with more processing
power.

A Gantt chart is a bar, representing the passage of time, divided into
regions labeled to show what thread is running during the corresponding
time interval. For example, the Gantt chart

T1 T2 T1
0 ) 15 20

shows thread T1 as running from time 0 to time 5 and again from time 15
to time 20; thread T2 runs from time 5 to time 15.

Consider an example with two periodically executing threads. One, T1,
has a period and deadline of four seconds and a worst-case execution time
per period of two seconds. The other, T2, has a period and deadline of six
seconds and a worst-case execution time per period of three seconds. On the
surface, this looks like it might just barely be feasible on a single processor:
T1 has an average demand of half a processor (two seconds per four) and
T2 also has an average demand of half a processor (three seconds per six),
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totalling to one fully utilized, but not oversubscribed, processor. Assume
that all overheads, such as the time to do context switching between the
threads, have been accounted for by including them in the threads’ worst-
case execution times.

However, to see whether this will really work without any missed dead-
lines, I need to draw a Gantt chart to determine whether the threads can
get the processor when they need it. Because T1 has the shorter period, I
assign it the higher priority. By Liu and Layland’s other theorem, I assume
both T1 and T2 are ready to start a period at time 0. The first six seconds
of the resulting Gantt chart looks like this:

T1|T2|T1
0 2 4 6

Note that T1 runs initially, when both threads are runnable, because it has
the higher priority. Thus, it has no difficulty making its deadline. When T1
goes into a waiting state at time 2, T2 is able to start running. Unfortu-
nately, it can get only two seconds of running done by the time T1 becomes
runnable again, at the start of its second period, which is time 4. At that
moment, T2 is preempted by the higher-priority thread T1, which occupies
the processor until time 6. Thus, T2 misses its deadline: by time 6, it has
run for only two seconds, rather than three.

If you accept Liu and Layland’s theorem, you will know that switching
to the other fixed-priority assignment (with T2 higher priority than T1)
won’t solve this problem. However, rather than taking this theorem at face
value, you can draw the Gantt chart for this alternative priority assignment
in Exercise [3.3] and see that again one of the threads misses its deadline.

In Section I will present a scheduling mechanism that can handle
the preceding scenario successfully. First, though, I will show one more
example—this time one for which fixed-priority scheduling suffices. Suppose
T2’s worst-case execution time were only two seconds per six second period,
with all other details the same as before. In this case, a Gantt chart for the
first twelve seconds would look as follows:

T1|T2|T1|T2|T1 |idle
0 2 4 6 8 10 12

Notice that T1 has managed to execute for two seconds during each of its
three periods (04, 4-8, and 8-12), and that T2 has managed to execute for
two seconds during each of its two periods (0-6 and 6-12). Thus, neither



3.5. DYNAMIC-PRIORITY SCHEDULING 65

missed any deadlines. Also, you should be able to convince yourself that
you don’t need to look any further down the timeline, because the pattern
of the first 12 seconds will repeat itself during each subsequent 12 seconds.

3.5 Dynamic-Priority Scheduling

Priority-based scheduling can be made more flexible by allowing the operat-
ing system to automatically adjust threads’ priorities to reflect changing cir-
cumstances. The relevant circumstances, and the appropriate adjustments
to make, depend what user goals the system is trying to achieve. In this
section, I will present a couple different variations on the theme of dynami-
cally adjusted priorities. First, for continuity with Section Section
shows how priorities can be dynamically adjusted for periodic hard-real-
time threads using a technique known as Earliest Deadline First scheduling.
Then Section [3.5.2] explains decay usage scheduling, a dynamic adjustment
policy commonly used in general-purpose computing environments.

3.5.1 Earliest Deadline First Scheduling

You saw in Section that rate-monotonic scheduling is the optimal fixed-
priority scheduling method, but that even it couldn’t schedule two threads,
one of which needed two seconds every four and the other of which needed
three seconds every six. That goal is achievable with an optimal method for
dynamically assigning priorities to threads. This method is known as Farli-
est Deadline First (EDF'). In EDF scheduling, each time a thread becomes
runnable you re-assign priorities according to the following rule: the sooner
a thread’s next deadline, the higher its priority. The optimality of EDF is
another of Liu and Layland’s theorems.

Consider again the example with T1 needing two seconds per four and
T2 needing three seconds per six. Using EDF scheduling, the Gantt chart
for the first twelve seconds of execution would be as follows:

T1| T2 |T1| T2 |T1
0 2 5 7 10 12

There is no need to continue the Gantt chart any further because it will start
repeating. Notice that neither thread misses any deadlines: T1 receives two
seconds of processor time in each period (0-4, 4-8, and 8-12), while T2
receives three seconds of processing in each of its periods (06 and 6-12).
This works better than rate-monotonic scheduling because the threads are
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prioritized differently at different times. At time 0, T1 is prioritized over T2
because its deadline is sooner (time 4 versus 6). However, when T1 becomes
runnable a second time, at time 4, it gets lower priority than T2 because
now it has a later deadline (time 8 versus 6). Thus, the processor finishes
work on the first period of T2’s work, rather than starting in on the second
period of T1’s work.

In this example, there is a tie in priorities at time 8, when T1 becomes
runnable for the third time. Its deadline of 12 is the same as T2’s. If you
break the priority tie in favor of the already-running thread, T2, you obtain
the preceding Gantt chart. In practice, this is the correct way to break the
tie, because it will result in fewer context switches. However, in a theoretical
sense, any tie-breaking strategy will work equally well. In Exercise you
can redraw the Gantt chart on the assumption that T2 is preempted in order
to run T1.

3.5.2 Decay Usage Scheduling

Although we all benefit from real-time control systems, such as those keep-
ing airplanes in which we ride from crashing, they aren’t the most prominent
computers in our lives. Instead, we mostly notice the workstation computers
that we use for daily chores, like typing this book. These computers may
execute a few real-time threads for tasks such as keeping an MP3 file of mu-
sic decoding and playing at its natural rate. However, typically, most of the
computer user’s goals are not expressed in terms of deadlines, but rather
in terms of a desire for quick response to interaction and efficient (high
throughput) processing of major, long-running computations. Dynamic pri-
ority adjustment can help with these goals too, in operating systems such
as Mac OS X or Microsoft Windows.

Occasionally, users of general-purpose workstation computers want to
express an opinion about the priority of certain threads in order to achieve
goals related to urgency, importance, or resource allocation. This works
especially well for importance; for example, a search for signs of extra-
terrestrial intelligence might be rated a low priority based on its small chance
of success. These user-specified priorities can serve as base priorities, which
the operating system will use as a starting point for its automatic adjust-
ments. Most of the time, users will accept the default base priority for all
their threads, and so the only reason threads will differ in priority is because
of the automatic adjustments. For simplicity, in the subsequent discussion,
I will assume that all threads have the same base priority.

In this kind of system, threads that tie for top priority after incorpo-
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rating the automatic adjustments are processed in a round-robin fashion,
as discussed earlier. That is, each gets to run for one time slice, and then
the scheduler switches to the next of the threads. The length of time each
thread is allowed to run before switching may also be called a quantum,
rather than a time slice. The thread need not run for its full time slice; it
could, for example, make an 1/O request and go into a waiting state long
before the time slice is up. In this case, the scheduler would immediately
switch to the next thread.

One reason for the operating system to adjust priorities is to maximize
throughput in a situation in which one thread is processor-bound and an-
other is disk-bound. For example, in Chapter [2| I introduced a scenario
where the user is running a processor-intensive graphics rendering program
in one window, while running a disk-intensive virus scanning program in
another window. As I indicated there, the operating system can keep both
the processor and the disk busy, resulting in improved throughput relative
to using only one part of the computer system at a time. While the disk
is working on a read request from the virus scanner, the processor can be
doing some of the graphics rendering. As soon as the disk transaction is
complete, the scheduler should switch the processor’s attention to the virus
scanner. That way, the virus scanner can quickly look at the data that was
read in and issue its next read request, so that the disk drive can get back to
work without much delay. The graphics program will have time enough to
run again once the virus scanning thread is back to waiting for the disk. In
order to achieve this high-throughput interleaving of threads, the operating
system needs to assign the disk-intensive thread a higher priority than the
processor-intensive one.

Another reason for the operating system to adjust priorities is to mini-
mize response time in a situation where an interactive thread is competing
with a long-running computationally intensive thread. For example, sup-
pose that you are running a program in one window that is trying to set a
new world record for computing digits of 7, while in another window you are
typing a term paper. During the long pauses while you rummage through
your notes and try to think of what to write next, you don’t mind the pro-
cessor giving its attention to computing 7. But the moment you have an
inspiration and start typing, you want the word processing program to take
precedence, so that it can respond quickly to your keystrokes. Therefore,
the operating system must have given this word processing thread a higher
priority.

Notice that in both these situations, a computationally intensive thread
is competing with a thread that has been unable to use the processor for
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a while, either because it was waiting for a disk transaction to complete
or because it was waiting for the user to press another key. Therefore, the
operating system should adjust upward the priority of threads that are in
the waiting state and adjust downward the priority of threads that are in
the running state. In a nutshell, that is what decay usage schedulers, such
as the one in Mac OS X, do. The scheduler in Microsoft Windows also fits
the same general pattern, although it is not strictly a decay usage scheduler.
I will discuss both these schedulers in more detail in the remainder of this
section.

A decay usage scheduler, such as in Mac OS X, adjusts each thread’s
priority downward from the base priority by an amount that reflects recent
processor usage by that thread. (However, there is some cap on this ad-
justment; no matter how much the thread has run, its priority will not sink
below some minimum value.) If the thread has recently been running a lot,
it will have a priority substantially lower than its base priority. If the thread
has not run for a long time (because it has been waiting for the user, for
example), then its priority will equal the base priority. That way, a thread
that wakes up after a long waiting period will take priority over a thread
that has been able to run.

The thread’s recent processor usage increases when the thread runs and
decays when the thread waits, as shown in Figure[3.9] When the thread has
been running, its usage increases by adding in the amount of time that it ran.
When the thread has been waiting, its usage decreases by being multiplied
by some constant every so often; for example, Mac OS X multiplies the
usage by 5/8, eight times per second. Rather than continuously updating
the usage of every thread, the system can calculate most of the updates to
a particular thread’s usage just when its state changes, as I describe in the
next two paragraphs.

The currently running thread has its usage updated whenever it voluntar-
ily yields the processor, has its time slice end, or faces potential preemption
because another thread comes out of the waiting state. At these points, the
amount of time the thread has been running is added to its usage, and its
priority is correspondingly lowered. In Mac OS X, the time spent in the
running state is scaled by the current overall load on the system before it
is added to the thread’s usage. That way, a thread that runs during a time
of high load will have its priority drop more quickly to give the numerous
other contending threads their chances to run.

When a thread is done spending time in the waiting state, its usage is
adjusted downward to reflect the number of decay periods that have elapsed.
For example, in Mac OS X, the usage is multiplied by (5/8)", where n is
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Figure 3.9: In a decay usage scheduler, such as Mac OS X uses, a thread’s
usage increases while it runs and decays exponentially while it waits. This
causes the priority to decrease while running and increase while waiting.

the number of eighths of a second that have elapsed. Because this is an
exponential decay, even a fraction of a second of waiting is enough to bring
the priority much of the way back to the base, and after a few seconds of
waiting, even a thread that previously ran a great deal will be back to base
priority. In fact, Mac OS X approximates (5/8)" as 0 for n > 30, so any
thread that has been waiting for at least 3.75 seconds will be exactly at base
priority.

Microsoft Windows uses a variation on this theme. Recall that a decay
usage scheduler adjusts the priority downward from the base to reflect recent
running and restores the priority back up toward the base when the thead
waits. Windows does the reverse: when a thread comes out of a wait state,
it is given an elevated priority, which then sinks back down toward the base
priority as the thread runs. The net effect is the same: a thread that has been
waiting gets a higher priority than one that has been running. The other
difference is in how the specific numerical size of the change is calculated.
When the thread runs, Windows decreases its priority down to the base in a
linear fashion, as with decay usage scheduling. However, Windows does not
use exponential decay to boost waiting threads. Instead, a thread that has
been waiting is given a priority boost that depends on what it was waiting
for: a small boost after waiting for a disk drive, a larger boost after waiting
for input from the keyboard, and so forth. Because the larger boosts are
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associated with the kinds of waiting that usually take longer, the net effect
is broadly similar to what exponential decay of a usage estimate achieves.

As described in Section [3.4], a scheduler can store the run queue as an
array of thread lists, one per priority level. In this case, it can implement
priority adjustments by moving threads from one level to another. There-
fore, the Mac OS X and Microsoft Windows schedulers are both considered
examples of the broader class of multilevel feedback queue schedulers. The
original multilevel scheduler placed threads into levels primarily based on
the amount of main memory they used. It also used longer time slices for the
lower priority levels. Today, the most important multilevel feedback queue
schedulers are those approximating decay-usage scheduling.

One advantage to decreasing the priority of running processes below the
base, as in Mac OS X, rather than only down to the base, as in Microsoft
Windows, is that doing so will normally prevent any runnable thread from
being permanently ignored, even if a long-running thread has a higher base
priority. Of course, a Windows partisan could reply that if base priorities
indicate importance, the less important thread arguably should be ignored.
However, in practice, totally shutting out any thread is a bad idea; one rea-
son is the phenomenon of priority inversion, which I will explain in Chap-
ter 4l Therefore, Windows has a small escape hatch: every few seconds, it
temporarily boosts the priority of any thread that is otherwise unable to get
dispatched.

One thing you may notice from the foregoing examples is the tendancy
of magic numbers to crop up in these schedulers. Why is the usage decayed
by a factor of 5/8, eight times a second, rather than a factor of 1/2, four
times a second? Why is the time quantum for round-robin execution 10
milliseconds under one system and 30 milliseconds under another? Why
does Microsoft Windows boost a thread’s priority by six after waiting for
keyboard input, rather than by five or seven?

The answer to all these questions is that system designers have tuned the
numerical parameters in each system’s scheduler by trial and error. They
have done experiments using workloads similar to those they expect their
system to encounter in real use. Keeping the workload fixed, the exper-
imenter varies the scheduler parameters and measures such performance
indicators as response time and throughput. No one set of parameters will
optimize all measures of performance for all workloads. However, by careful,
systematic experimentation, parameters can be found that are likely to keep
most users happy most of the time. Sometimes system administrators can
adjust one or more of the parameters to suit the particular needs of their
own installations, as well.
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Before leaving decay usage schedulers, it is worth pointing out one kind
of user goal that these schedulers are not very good at achieving. Suppose
you have two processing-intensive threads and have decided you would like
to devote two-thirds of your processor’s attention to one and one-third to the
other. If other threads start running, they can get some of the processor’s
time, but you still want your first thread to get twice as much processing
as any of the other threads. In principle, you might be able to achieve
this resource allocation goal under a decay usage scheduler by appropriately
fiddling with the base priorities of the threads. However, in practice it is
very difficult to come up with appropriate base priorities to achieve desired
processor proportions. Therefore, if this kind of goal is important to a
system’s users, a different form of scheduler should be used, such as I discuss
in Section [3.6]

3.6 Proportional-Share Scheduling

When resource allocation is a primary user goal, the scheduler needs to take
a somewhat longer-term perspective than the approaches I have discussed
thus far. Rather than focusing just on which thread is most important to
run at the moment, the scheduler needs to be pacing the threads, doling out
processor time to them at controlled rates.

Researchers have proposed three basic mechanisms for controlling the
rate at which threads are granted processor time:

e FEach thread can be granted the use of the processor equally often,
just as in a simple round-robin. However, those that have larger al-
locations are granted a longer time slice each time around than those
with smaller allocations. This mechanism is known as weighted round-

robin scheduling (WRR).

e A uniform time slice can be used for all threads. However, those that
have larger allocations can run more often, because the threads with
smaller allocations “sit out” some of the rotations through the list of
runnable threads. Several names are used for this mechanism, depend-
ing on the context and minor variations: weighted fair queuing (WFQ),
stride scheduling, and virtual time round-robin scheduling (VTRR).

e A uniform time slice can be used for all threads. However, those with
larger allocations are chosen to run more often (on the average), be-
cause the threads are selected by a lottery with weighted odds, rather



72 CHAPTER 3. SCHEDULING

than in any sort of rotation. This mechanism is called lottery schedul-
mng.

Lottery scheduling is not terribly practical, because although each thread
will get its appropriate share of processing time over the long run, there
may be significant deviations over the short run. Consider, for example, a
system with two threads, each of which should get half the processing time.
If the time-slice duration is one twentieth of a second, each thread should
run ten times per second. Yet one thread might get shut out for a whole
second, risking a major loss of responsiveness, just by having a string of bad
luck. A coin flipped twenty times per second all day long may well come up
heads twenty times in a row at some point. In Programming Project [3.2]
you will calculate the probability and discover that over the course of a
day the chance of one thread or the other going a whole second without
running is actually quite high. Despite this shortcoming, lottery scheduling
has received considerable attention in the research literature.

Turning to the two non-lottery approaches, I can illustrate the difference
between them with an example. Suppose three threads (T1, T2, and T3)
are to be allocated resources in the proportions 3:2:1. Thus, T1 should get
half the processor’s time, T2 one-third, and T3 one-sixth. With weighted
round-robin scheduling, I might get the following Gantt chart with times in
milliseconds:

T1 T2 T3
0 15 25 30

Taking the other approach, I could use a fixed time slice of 5 milliseconds,
but with T2 sitting out one round in every three, and T3 sitting out two
rounds out of three. The Gantt chart for the first three scheduling rounds
would look as follows (thereafter, the pattern would repeat):

T1 T2 T3 T1 T2 T1
0 5 10 15 20 25 30

Weighted round-robin scheduling has the advantage of fewer thread switches.
Weighted fair queueing, on the other hand, can keep the threads accumu-
lated runtimes more consistently close to the desired proportions. Exer-
cise [3.7] allows you to explore the difference.

In Linux, the user-specified niceness of a thread controls the proportion
of processor time that the thread will receive. The core of the scheduling
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algorithm is a weighted round-robin, as in the first Gantt chart. (A separate
scheduling policy is used for fixed-priority scheduling of real-time threads.
The discussion here concerns the scheduler used for ordinary threads.) This
proportional-share scheduler is called the Completely Fair Scheduler (CFS).
On a multiprocessor system, CFS schedules the threads running on each pro-
cessor; a largely independent mechanism balances the overall computational
load between processors. The end-of-chapter notes revisit the question of
how proportional-share scheduling fits into the multiprocessor context.

Rather than directly assign each niceness level a time slice, CFS assigns
each niceness level a weight and then calculates the time slices based on the
weights of the runnable threads. Each thread is given a time slice propor-
tional to its weight divided by the total weight of the runnable threads. CFS
starts with a target time for how long it should take to make one complete
round-robin through the runnable threads. Suppose, for example, that the
target is 6 milliseconds. Then with two runnable threads of equal niceness,
and hence equal weight, each thread will run for 3 milliseconds, independent
of whether they both have niceness 0 or both have niceness 19. With four
equal-niceness threads, each would run 1.5 milliseconds.

Notice that the thread-switching rate is dependent on the overall system
load, unlike with a fixed time slice. This means that as a system using CFS
becomes more loaded, it will tend to sacrifice some throughput in order
to retain a desired level of responsiveness. The level of responsiveness is
controlled by the target time that a thread may wait between successive
opportunities to run, which is settable by the system administrator. The
value of 6 milliseconds used in the examples is the default for uniprocessor
systems.

However, if system load becomes extremely high, CFS does not con-
tinue sacrificing throughput to response time. This is because there is a
lower bound on how little time each thread can receive. After that point
is reached, adding additional threads will increase the total time to cycle
through the threads, rather than continuing to reduce the per-thread time.
The minimum time per thread is also a parameter the system administrator
can configure; the default value causes the time per thread to stop shrinking
once the number of runnable threads reaches 8.

Now consider a case where two threads share the CPU, one with niceness
0 and the other with niceness 5. CFS assigns these niceness levels the weights
of 1024 and 335 respectively. The time that the threads get is therefore
proportional to 1024/(1024 4+ 335) and 335/(1024 + 335). Because 1024 is
roughly 3 times as large as 335, we can estimate that the thread with niceness
0 will receive approximately 4.5 milliseconds out of each 6 milliseconds and
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the thread with niceness 5 will receive approximately 1.5 milliseconds out of
each 6 milliseconds. The same result would be achieved if the threads had
niceness 5 and 10 rather than 0 and 5, because the weights would then be 335
and 110, which are still in approximately a 3-to-1 ratio. More generally, the
CPU proportion is determined only by the relative difference in nicenesses,
rather than the absolute niceness levels, because the weights are arranged in
a geometric progression. (This is analogous to well-tempered musical scales,
where a particular interval, such as a major fifth, has the same harmonic
quality no matter where on the scale it is positioned, because the ratio of
frequencies is the same.)

Having seen this overview of how nicenesses control the allocation of
processor time in CFS, we can now move into a discussion of the actual
mechanism used to meter out the processor time. The CFS scheduling
mechanism is based around one big idea, with lots of smaller details that I
will largely ignore.

The big idea is keeping track for each thread of how much total running it
has done, measured in units that are scaled in accordance with the thread’s
weight. That is, a niceness 0 thread is credited with 1 nanosecond of running
for each nanosecond of time that elapses with the thread running, but a
niceness 5 thread would be credited with approximately 3 nanoseconds of
running for each nanosecond it actually runs. (More precisely, it would be
credited with 1024 /335 nanoseconds of running for each actual nanosecond.)

Given this funny accounting of how much running the threads are doing
(which is called virtual runtime), the goal of keeping the threads running in
their proper proportion simply amounts to running whichever is the furthest
behind. However, if CFS always devoted the CPU to the thread that was
furthest behind, it would be constantly switching back and forth between the
threads. Instead, the scheduler sticks with the current thread until its time
slice runs out or it is preempted by a waking thread. Once the scheduler
does choose a new thread, it picks the thread with minimum virtual runtime.
Thus, over the long haul, the virtual runtimes are kept approximately in bal-
ance, which means the actual runtimes are kept in the proportion specified
by the threads’ weights, which reflect the threads’ nicenesses.

This concept of keeping virtual runtimes in balance is important enough
to consider a couple concrete examples. First, consider a case where two
threads have equal niceness, so the scheduler tries to make sure that the
two threads have run for equal amounts of time. After x nanoseconds have
elapsed, each of the two threads should have run for x/2 nanoseconds. To
make this always exactly true, the scheduler would need to keep switching
back and for between the threads, which is inefficient. Instead, the scheduler
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is willing to stick with one thread for a length of time, the time slice. As
a result, you might see that after 9 milliseconds, instead of each of the two
threads having run for 4.5 milliseconds, maybe Thread A has run for 6 mil-
liseconds and Thread B has run for 3 milliseconds, as shown in Figure [3.10
When the scheduler decides which thread to run next, it will pick the one
that has only run for 3 milliseconds, that is, Thread B, so that it has a
chance to catch up with Thread A. That way, if you check again later, you
won’t see Thread A continuing to get further and further advantaged over
Thread B. Instead, you will see the two threads taking turns for which one
has run more, but with the difference between the two of them never being
very large, perhaps 3 milliseconds at most, as this example suggests.

Now consider what happens when the two threads have different niceness.
For example, suppose Thread A has niceness 0 and Thread B has niceness
5. To make the arithmetic easier, let us pretend that 1024/335 is exactly
3, so that Thread A should run exactly 3 times more than Thread B. Now,
even if the scheduler did not have to worry about the efficiency problems of
switching between the threads, the ideal situation after 9 milliseconds would
no longer be that each thread has run for 4.5 milliseconds. Instead, the
ideal would be for Thread A to have run for 6.75 milliseconds and Thread B
for only 2.25 milliseconds. But again, if the scheduler is only switching
threads when discrete time slices expire, this ideal situation will not actually
happen. Instead, you may see that Thread A has run for 6 milliseconds and
Thread B has run for 3 milliseconds, as shown in Figure Which one
should run next? We can no longer say that Thread B is further behind
and should be allowed to catch up. In fact, Thread B has run for longer
than it ought to have. (Remember, it really ought to have only run for 2.25
milliseconds.) The way the scheduler figures this out is that it multiplies
each thread’s time by a scaling factor. For Thread A, that scaling factor is
1, whereas for Thread B, it is 3. Thus, although their actual runtimes are
6 milliseconds and 3 milliseconds, their virtual runtimes are 6 milliseconds
and 9 milliseconds. Now, looking at these virtual runtimes, it is clear that
Thread A is further behind (it has only 6 virtual milliseconds) and Thread B
is ahead (it has 9 virtual milliseconds). Thus, the scheduler knows to choose
Thread A to run next.

Notice that if Thread A and Thread B in this example were in their ideal
situation of having received 6.75 real milliseconds and 2.25 real milliseconds,
then their virtual runtimes would be exactly tied. Both threads would have
run for 6.75 virtual milliseconds, once the scaling factors are taken into
account.

This description of accumulating virtual runtime would suffice if all
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virtual runtime

6 A

time

Figure 3.10: Because Thread A and Thread B both have niceness 0, each
accumulates 1 millisecond of virtual runtime for each elapsed millisecond
during which it runs. The bottom of this figure shows a Gantt chart indi-
cating which thread is running at each point. The top of the figure plots
virtual runtime versus time for Thread A (solid) and Thread B (dashed). At
the 9 millisecond point, the scheduler would choose Thread B to run next,
because it has the lower virtual runtime.



3.6. PROPORTIONAL-SHARE SCHEDULING 77

virtual runtime

Ot P R EtD B
/
/
/
/
/
/
/
/
/
/
/
/
/
6+ . A
/
/
!
/
/
/
/
!
/
/
/
/
I
1 ,
3 /
!
/
!
/
/
/
/
/
/
/
/
/
/ .
+ f — time
0 3 6 9
A B A

Figure 3.11: Thread A still accumulates 1 millisecond of virtual runtime
for each elapsed millisecond during which it runs, but Thread B accumu-
lates virtual runtime at approximately 3 times as fast a rate, because it
has niceness 5. The bottom of this figure shows a Gantt chart indicating
which thread is running at each point. The top of the figure plots virtual
runtime versus time for Thread A (solid) and Thread B (dashed). At the
9 millisecond point, the scheduler would choose Thread A to run next, be-
cause it has the lower virtual runtime, corresponding to the fact that it has
only run twice as much as Thread B, rather than three times as much. (As-
suming both threads remained runnable the whole time, the actual Linux
CFS scheduler would not have given them equal time slices as shown here.
However, the accounting for virtual runtime works the same in any case.)
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threads started when the system was first booted and stayed continuously
runnable. However, it needs a bit of enhancement to deal with threads
being created or waking up from timed sleeps and I/O waits. If the sched-
uler didn’t do anything special with them, they would get to run until they
caught up with the pre-existing threads, which could be a ridiculous amount
of runtime for a newly created thread or one that has been asleep a long
time. Giving that much runtime to one thread would deprive all the other
threads of their normal opportunity to run.

For a thread that has only been briefly out of the run queue, the CFS
actually does allow it to catch up on runtime. But once a thread has been
non-runnable for more than a threshold amount of time, when it wakes up,
its virtual runtime is set forward so as to be only slightly less than the
minimum virtual runtime of any of the previously runnable threads. That
way, it will get to run soon but not for much longer than usual. This is similar
to the effect achieved through dynamic priority adjustments in decay usage
schedulers and Microsoft Windows. As with those adjustments, the goal is
not proportional sharing, but responsiveness and throughput.

Any newly created thread is given a virtual runtime slightly greater than
the minimum virtual runtime of the previously runnable threads, essentially
as though it had just run and were now waiting for its next turn to run.

The run queue is kept sorted in order of the runnable threads’ virtual
runtimes. The data structure used for this purpose is a red-black tree, which
is a variant of a binary search tree with the efficiency-enhancing property
that no leaf can ever be more than twice as deep as any other leaf. When the
CFS scheduler decides to switch threads, it switches to the leftmost thread
in the red-black tree, that is, the one with the earliest virtual runtime.

The scheduler performs these thread switches under two circumstances.
One is the expiration of a time slice. The other is when a new thread
enters the run queue, provided that the currently running thread hasn’t just
recently started running. (There is a configurable lower limit on how quickly
a thread can be preempted.)

One of the advantages of positioning runnable threads on a timeline
of virtual runtimes (represented as the red-black tree) is that it naturally
prevents waking threads from starving other threads that have remained
runnable, as was possible with earlier Linux schedulers. As time marches
on, threads that wake up get inserted into the timeline at later and later
virtual runtimes. A runnable thread that has been patiently waiting for the
CPU, on the other hand, retains a fixed virtual runtime. As such, it will
eventually have the lowest virtual runtime, and hence will be chosen to run
(once a thread switch occurs).
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3.7 Security and Scheduling

The kind of attack most relevant to scheduling is the denial of service (DoS)
attack, that is, an attack with the goal of preventing legitimate users of a
system from being able to use it. Denial of service attacks are frequently
nuisances motivated by little more than the immaturity of the perpetrators.
However, they can be part of a more sophisticated scheme. For example,
consider the consequences if a system used for coordinating a military force
were vulnerable to a denial of service attack.

The most straightforward way an attacker could misuse a scheduler in
order to mount a denial of service attack would be to usurp the mechanisms
provided for administrative control. Recall that schedulers typically provide
some control parameter for each thread, such as a deadline, a priority, a base
priority, or a resource share. An authorized system administrator needs to be
able to say “This thread is a really low priority” or the analogous statement
about one of the other parameters. If an attacker could exercise that same
control, a denial of service attack could be as simple as giving a low priority
to a critical thread.

Therefore, real operating systems guard the thread-control interfaces.
Typically, only a user who has been authenticated as the “owner” of a partic-
ular thread or as a bona fide system administrator can control that thread’s
scheduling parameters. Naturally, this relies upon other aspects of the sys-
tem’s security that I will consider in later chapters: the system must be
protected from tampering, must be able to authenticate the identity of its
users, and must be programmed in a sufficiently error-free fashion that its
checks cannot be evaded.

Because real systems guard against an unauthorized user de-prioritizing
a thread, attackers use a slightly more sophisticated strategy. Rather than
de-prioritizing the targeted thread, they compete with it. That is, the at-
tackers create other threads that attempt to siphon off enough of a scarce
resource, such as processor time, so that little or none will be left for the
targeted thread.

One response of system designers has been to arrange that any denial
of service attack will be sufficiently cumbersome that it can be easily dis-
tinguished from normal behavior and hence interdicted. For example, recall
that a single thread at a high fixed priority could completely starve all
the normal threads. Therefore, most systems prohibit normal users from
running such threads, reserving that privilege to authorized system admin-
istrators. In fact, typical systems place off-limits all fixed priorities and
all higher-than-normal priorities, even if subject to decay-usage adjustment.
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The result is that an attacker must run many concurrent threads in order
to drain off a significant fraction of the processor’s time. Because legitimate
users generally won’t have any reason to do that, denial of service attacks can
be distinguished from ordinary behavior. A limit on the number of threads
per user will constrain denial of service attacks without causing most users
much hardship. However, there will inevitably be a trade-off between the
degree to which denial of service attacks are mitigated and the degree to
which normal users retain flexibility to create threads.

Alternatively, a scheduling policy can be used that is intrinsically more
resistant to denial of service attacks. In particular, proportional-share sched-
ulers have considerable promise in this regard. The version that Linux in-
cludes can assign resource shares to users or other larger groups, with those
shares subject to hierarchical subdivision. This was originally proposed by
Waldspurger as part of lottery scheduling, which I observed is disfavored
because of its susceptibility to short-term unfairness in the distribution of
processing time. Waldspurger later showed how the same hierarchical ap-
proach could be used with stride scheduling, a deterministic proportional-
share scheduler, and it has subsequently been used with a variety of other
proportional-share schedulers.

Long-running server threads, which over their lifetimes may process re-
quests originating from many different users, present an additional compli-
cation. If resources are allocated per user, which user should be funding the
server thread’s resource consumption? The simplest approach is to have a
special user just for the purpose with a large enough resource allocation to
provide for all the work the server thread does on behalf of all the users.
Unfortunately, that is too coarse-grained to prevent denial of service attacks.
If a user submits many requests to the server thread, he or she may use up
its entire processor time allocation. This would deny service to other users’
requests made to the same server thread. Admittedly, threads not using the
service will be isolated from the problem, but that may be small solace if
the server thread in question is a critical one.

To address this issue, recent research has suggested that threads should
be able to switch from one user’s resource allocation to another, as the
threads handle different requests. The idea is to allocate resources not di-
rectly to threads, but to independent resource containers instead. At any
one time, each thread draws resources from one resource container. How-
ever, it can switch to drawing from a different resource container. This
solves the problem of fairly accounting for server threads’ usage. Because
multiple threads can be made to draw out of a single resource container, the
same proposal also can prevent users from receiving more processor time by
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running more threads.

Finally, keep in mind that no approach to processor scheduling taken
alone will prevent denial of service attacks. An attacker will simply over-
whelm some other resource than processor time. For example, in the 1990s,
attackers frequently targeted systems’ limited ability to establish new net-
work connections. Nonetheless, a comprehensive approach to security needs
to include processor scheduling, as well as networking and other components.

Exercises

3.1

3.2

3.3

Gantt charts, which I introduced in the context of hard-real-time
scheduling, can also be used to illustrate other scheduling concepts,
such as those concerning response time. Suppose thread T1 is trig-
gered by an event at time 0 and needs to run for 1.5 seconds before it
can respond. Suppose thread T2 is triggered by an event occurring 0.3
seconds later than T1’s trigger, and that T2 needs to run 0.2 seconds
before it can respond. Draw a Gantt chart for each of the following
three cases, and for each indicate the response time of T1, the response
time of T2, and the average response time:

(a) T1 is allowed to run to completion before T2 is run.

(b) T1 is preempted when T2 is triggered; only after T2 has com-
pleted does T1 resume.

(c) T1 is preempted when T2 is triggered; the two threads are then
executed in a round-robin fashion (starting with T2), until one
of them completes. The time slice (or quantum) is .05 seconds.

Suppose a Linux system is running three threads, each of which runs
an infinite loop with nothing in the body, so that it just chews up
as much processor time as it is given. One thread is run by one user,
whereas the other two threads are run by a second user (perhaps logged
in over the network or in a second virtual console). Does the scheduler
give each user a fair share (one-half) of the the processor’s time, or
does it give each thread a fair share (one-third)? You can answer
this question from the text of this chapter, but see also Exploration
Project Also, which behavior would you prefer? Explain why.

Draw a Gantt chart for two threads, T1 and T2, scheduled in accor-
dance to fixed priorities with T2 higher priority than T1. Both threads
run periodically. One, T1, has a period and deadline of four seconds
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and an execution time per period of two seconds. The other, T2, has
a period and deadline of six seconds and an execution time per pe-
riod of three seconds. Assume both threads start a period at time 0.
Draw the Gantt chart far enough to show one of the threads missing
a deadline.

Draw a Gantt chart for two threads, T1 and T2, scheduled in accor-
dance with the Earliest Deadline First policy. If the threads are tied
for earliest deadline, preempt the already-running thread in favor of
the newly runnable thread. Both threads run periodically. One, T1,
has a period and deadline of four seconds and an execution time per
period of two seconds. The other, T2, has a period and deadline of six
seconds and an execution time per period of three seconds. Assume
both threads start a period at time 0. Draw the Gantt chart to the
point where it would start to repeat. Are the deadlines met?

Suppose a system has three threads (T1, T2, and T3) that are all
available to run at time 0 and need one, two, and three seconds of
processing respectively. Suppose that each thread is run to completion
before starting another. Draw six different Gantt charts, one for each
possible order the threads can be run in. For each chart, compute the
turnaround time of each thread; that is, the time elapsed from when
it was ready (time 0) until it is complete. Also, compute the average
turnaround time for each order. Which order has the shortest average
turnaround time? What is the name for the scheduling policy that
produces this order?

The following analysis is relevant to lottery scheduling and is used in
Programming Project Consider a coin that is weighted so that
it comes up heads with probability p and tails with probability 1 — p,
for some value of p between 0 and 1. Let f(n,k,p) be the probability
that in a sequence of n tosses of this coin there is a run of at least k
consecutive heads.

(a) Prove that f(n,k,p) can be defined by the following recurrence.
If n <k, f(n,k,p)=0. If n =k, f(n,k,p) =p*. If n >k,

f(nvkap) = f(TL— 1vkap) +pk(1 —p)(l - f(n_ k— 1,](3,]))).

(b) Consider the probability that in n tosses of a fair coin, there are
at least k consecutive heads or at least k consecutive tails. Show
that this is equal to f(n — 1,k —1,1/2).
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3.7

3.8

Section [3.6] shows two Gantt charts for an example with three threads
that are to share a processor in the proportion 3:2:1. The first Gantt
chart shows the three threads scheduled using WRR and the second
using WFQ. For each of the two Gantt charts, draw a corresponding
graph with one line for each the three threads, showing that thread’s
accumulated virtual runtime (on the vertical axis) versus real time (on
the horizontal axis). Thread T1 should accumulate 2 milliseconds of
virtual runtime for each millisecond that it actually runs. Similarly,
Thread T2 should accumulate 3 milliseconds of virtual runtime for each
millisecond it runs and Thread T3 should accumulate 6 milliseconds for
each millisecond it runs. In both graphs, the three lines should all start
at (0,0) and end at (30,30). Look at how far the lines deviate from
the diagonal connecting these two points. Which scheduling approach
keeps the lines closer to the diagonal? This reflects how close each
approach is coming to continuously metering out computation to the
three threads at their respective rates.

Draw a variant of Figure|3.11|on page[77]based on the assumption that
the scheduler devotes 4.5 milliseconds to Thread A, then 1.5 millisec-
onds to Thread B, and then another 3 milliseconds to Thread A. If the
scheduler is again called upon to choose a thread at the 9 millisecond
point, which will it choose? Why?

Programming Projects

3.1

On a system where you can install modified Linux kernels, test the
effect of eliminating dynamic priority adjustments. (You will find the
relevant code in the file kernel/sched.c.) You should be able to
demonstrate that there is no change in how compute-bound processes
share the processor in accordance with their niceness. You should also
be able to demonstrate that the responsiveness of interactive processes
is degraded when there are lots of compute-bound processes running
as well. Rather than testing response time with a process that reads
input from the user, you can more easily get quantitative results with
a process that repeatedly sleeps and measures how much longer each
sleeping period actually is than was requested. Write a report in which
you explain what you did, and the hardware and software system con-
text in which you did it, carefully enough that someone could replicate
your results.
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Consider a coin that is weighted so that it comes up heads with prob-
ability p and tails with probability 1 — p, for some value of p between 0
and 1. Let f(n,k,p) be the probability that in a sequence of n tosses
of this coin there is a run of at least k consecutive heads.

(a) Write a program to calculate f(n, k,p) using the recurrence given
in Exercise (a). To make your program reasonably efficient,
you will need to use the algorithm design technique known as dy-
namic programming. That is, you should create an n+ 1 element
array, and then for i from 0 to n, fill in element i of the array
with f(i,k,p). Whenever the calculation of one of these values
of f requires another value of f, retrieve the required value from
the array, rather than using a recursive call. At the end, return
element n of the array.

(b) If threads A and B each are selected with probability 1/2 and
the time slice is 1/20 of a second, the probability that sometime
during a day thread A will go a full second without running is
£(20-60-60-24,20,1/2). Calculate this value using your program.

(c) The system’s performance is no better if thread B goes a long
time without running than if thread A does. Use the result from
Exercise (b) to calculate the probability that at least one of
threads A and B goes a second without processor time in the
course of a day.

Exploration Projects

3.1

3.2

Experimentally verify your answer to Exercise with the help of
another user. The top command will show you what fraction of the
processor each thread gets.

Experimentally measure the impact of niceness on the amount of pro-
cessor time given to compute-bound threads under as many UNIX-like
uniprocessor systems as you have access to. This will be most interest-
ing if you can compare a system with a proportional-share scheduler
(such as Linux) with a system that uses a decay usage scheduler (such
as Mac OS X or most older versions of UNIX). Be sure to experiment
on a system that is otherwise idle. Write a simple test program that
just loops. Run one copy normally (niceness 0) and another using the
nice command at elevated niceness. Use the top command to observe
what fraction of the processor each thread gets. Repeat the test using
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3.3

different degrees of elevated niceness, from 1 to 19. Also, repeat the
test in situations other than one thread of each niceness; for example,
what if there are four normal niceness threads and only one elevated
niceness thread? Write a report in which you explain what you did,
and the hardware and software system context in which you did it,
carefully enough that someone could replicate your results. Try to
draw some conclusions about the suitability of niceness as a resource
allocation tool on the systems you studied.

The instructions for this project assume that you are using a Linux
system; an analogous exploration may be possible on other systems,
but the specific commands will differ. Some portions of the project
assume you have permission to run fixed-priority threads, which ordi-
narily requires you to have full system administration privileges. Those
portions of the project can be omitted if you don’t have the requisite
permission. Some portions of the project assume you have at least two
processors, which can be two “cores” within a single processor chip;
in fact, even a single core will do if it has “hyper-threading” support
(the ability to run two threads). Only quite old computers fail to meet
this assumption; if you have such an old computer, you can omit those
portions of the project.

The C++ program shown in Figures and runs a number of
threads that is specified on the command line. (The main thread is
one; it creates a child thread for each of the others.) Each thread gets
the time of day when it starts running and then continues running
until the time of day is at least 5 seconds later. If you save the source
code of this program in threads.cpp, you can compile it using the
following command:

g++ -o threads -lpthread threads.cpp

(a) Suppose you run this program on a single processor using the nor-
mal CFS scheduler. As you increase the number of threads from
1 to 2, 3, and 4, what would you expect to happen to the total
elapsed time that the program needs to run? Would it stay nearly
constant at approximately 5 seconds or grow linearly upward to
10, 15, and 20 seconds? Why? To test your prediction, run the
following commands and look at the elapsed time that each one
reports. The schedtool program is used in these commands in
order to limit the threads to a single processor (processor number
0):
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#include <sys/time.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <pthread.h>
#include <iostream>
#include <sstream>
#include <unistd.h>

void killTime(int secs){
struct timeval start, now;
if (gettimeofday(&start, 0) < 0){
perror ("gettimeofday") ;

exit(1);
}
while (1){
if (gettimeofday (&now, 0) < 0){
perror ("gettimeofday");
exit(1);
}
if (now.tv_sec - start.tv_sec > secs ||
now.tv_sec - start.tv_sec == secs && now.tv_usec >= start.tv_usec){
return;
}
}
}
void *run(void *arg){
killTime(5);
return O;

}

Figure 3.12: This is the first portion of threads.cpp, a C++ program that
runs a number of threads specified on the command line. Each thread runs
until at least 5 seconds of time has elapsed since the thread started. The
program is continued in the next figure.
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int main(int argc, char *argv[]){
int nThreads;
std::istringstream argl(argv[1]);
argl >> nThreads;
pthread_t thread[nThreads-1];
int code;

for(int i = 0; i < nThreads-1; i++){
code = pthread_create(&thread[i], O, run, 0);
if (code) {
std::cerr << "pthread_create failed: " << strerror(code) << std::endl;
exit(1);
}
}
run(0) ;
for(int i = 0; i < nThreads-1; i++){
code = pthread_join(thread[i], 0);
if (code){
std::cerr << "pthread_join failed: " << strerror(code) << std::endl;
exit(1);
}
}

return O;

Figure 3.13: This is the second portion of threads.cpp, a C++ program
that runs a number of threads specified on the command line. Each thread
runs until at least 5 seconds of time has elapsed since the thread started.
The program is continued from the previous figure.
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schedtool -a 0 -e time ./threads
schedtool -a 0 -e time ./threads
schedtool -a 0 -e time ./threads
schedtool -a 0 -e time ./threads

D wWw NN -

Suppose you run the program on a single processor but using the
fixed-priority scheduler. All the threads are at the same priority
level and are scheduled using the FIFO rule. As you increase
the number of threads from 1 to 2, 3, and 4, what would you
expect to happen to the total elapsed time that the program
needs to run? Would it stay nearly constant at approximately
5 seconds or grow linearly upward to 10, 15, and 20 seconds?
Why? To test your prediction, run the following commands and
look at the elapsed time that each one reports. The schedtool
program is used in these commands not only to limit the threads
to a single processor, but also to specify FIFO scheduling with
priority level 50. The sudo program is used in these commands
to run with system administration privileges (assuming you have
this permission); this allows the FIFO fixed-priority scheduling
to be selected:

sudo schedtool -a
sudo schedtool -a

-F -p 50 -e time ./threads
-F -p 50 -e time ./threads
-F -p 50 -e time ./threads
-F -p 50 -e time ./threads

sudo schedtool -a

o O O O
S W N -

sudo schedtool -a

The time output lines that were generated by the prior experi-
ments included not only elapsed time, but also user and system
processor times. If you add together the user and system proces-
sor times to get total processor times, you should find that the
total is in each case quite similar to the elapsed time, because the
threads program kept the one processor busy essentially the full
time. Now suppose you switch to using two processors. With nor-
mal CFS scheduling, what do you expect to happen to the total
processor time as the number of threads goes from 1 to 2, 3, and
47 Why? To test your prediction, run the following commands:

schedtool -a 0,1 -e time ./threads 1
schedtool -a 0,1 -e time ./threads 2
schedtool -a 0,1 -e time ./threads 3
schedtool -a 0,1 -e time ./threads 4
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(d) Suppose you use two processors with fixed-priority FIFO schedul-
ing. What do you expect to happen to the total processor time
as the number of threads goes from 1 to 2, 3, and 47 Why? How
about the elapsed time; what do you expect will happen to it as
the number of threads goes from 1 to 2, 3, and 47 Why? To test
your predictions, run the following commands:

sudo schedtool -a 0,1 -F -p 50 -e time ./threads
sudo schedtool -a 0,1 -F -p 50 -e time ./threads
sudo schedtool -a 0,1 -F -p 50 -e time ./threads
sudo schedtool -a 0,1 -F -p 50 -e time ./threads

SwWw N -

Notes

I motivated the notion of thread states by explaining the inefficiency of busy
waiting and indicated that the alternative is for a thread that wants to wait
to notify the operating system. This issue was recognized early in the history
of operating systems. For example, the same 1959 paper [34] by Codd et
al. that I quoted in Chapter [2| remarks, “For the sake of efficient use of the
machine, one further demand is made of the programmer or compiler. When
a point is reached in a problem program beyond which activity on the central
processing unit cannot proceed until one or more input-output operations
are completed, the control must be passed to the supervisory program so
that other problem programs may be serviced.” (The “supervisory program”
is what today is called an operating system.)

I remarked that the main cost of thread switching is lost cache per-
formance. This observation has been quantified in various measurement
studies, such as one by Regehr [115].

I use the terms quantum and time slice interchangeably, in keeping
with contemporary usage. Early operating systems used these words dif-
ferently: quanta were finer subdivisions of coarser time slices. A subset
of the runnable threads would get brief quanta in a round-robin. When a
thread had received enough quanta to use up its whole time slice, it would
be moved out of the round-robin for a while, and another thread would move
in to take its place.

I mentioned fair-share, multilevel feedback queue, lottery, and stride
scheduling only in passing. Early references for them are numbers [85], [38],
[148], and [149], respectively.

Liu and Layland wrote a seminal 1973 article on hard-real-time schedul-
ing [100]. For a survey of how rate-monotonic scheduling has been general-
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ized to more realistic circumstances, see the article by Sha, Rajkumar, and
Sathaye [130].

I drew examples from three real systems’ schedulers: Mac OS X, Mi-
crosoft Windows, and Linux. For two of these (Max OS X and Linux), the
only reliable way to find the information is by reading the kernel source code,
as I did (versions Darwin 6.6 and Linux 2.6.38). For Microsoft Windows,
the source code is not publicly available, but conversely, one doesn’t need
to dig through it to find a more detailed description than mine: there is a
very careful one in Russinovich and Solomon’s book [123].

My segue from decay usage scheduling to proportional-share scheduling
was the remark that one could, in principle, achieve proportional shares by
suitably setting the base priorities of a decay usage scheduler, but that in
practice, it was difficult to map proportions to base priorities. The mathe-
matical modeling study by Hellerstein [73] provides evidence for both aspects
of this claim. Hellerstein explicitly shows that one can, in principle, achieve
what he terms “service rate objectives.” However, less explicitly, he also
shows this is not practical; reading his graphs carefully, one can see that
there are two choices. Either the service rates are so insensitive to the base
priorities as to render most proportions out of reach, or there is a region of
such extreme sensitivity that one jumps over many potential proportions in
stepping from one base priority difference to the next.

I remarked that although Linux’s CFS acts as a proportional-share sched-
uler on each processor, a relatively independent load-balancing mechanism
is used to apportion a system’s threads to its processors. In considering
whether the proportional-share concept could be more directly applied to
the multiprocessor context, the first question is what that would mean. Sup-
pose two threads are runnable and that they have weights 2 and 1. On a
single processor, it is clear that the first should get two-thirds of the pro-
cessing capacity and the other should get one-third. But what if you have
two processors? Then the most that one thread can receive is half of the
system’s total processing capacity. The other thread could receive half as
much, but only by leaving one of the processors idle half the time; a more
practical approach would be to give each thread the full use of one processor.
Generalizing from this to a suitable definition of how weights should behave
on a multiprocessor system requires some care; Chandra and his coworkers
explained this in their work on “Surplus Fair Scheduling” [29]. Once this
definitional question is resolved, the next question is how the scheduler can
efficiently run on multiple processors without the bottleneck of synchronized
access to a single run queue. Although this is still an active research topic,
the Distributed Weighted Round Robin scheduler of Li, Baumberger, and
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Hahn [97] looks promising.

An alternative to proportional-share scheduling is to augment the sched-
uler with a higher-level resource manager that adjusts thread priorities when
the system is heavily utilized so as to achieve the desired resource allocation.
An example of this approach is the Windows System Resource Manager that
Microsoft includes in Windows Server 2008 R2. This resource manager can
support policies that divide CPU time equally per process, per user, per
remote desktop session, or per web application pool, as well as allowing
some users or groups to be given larger shares than others. The details do
not appear to be publicly documented, though some information is available
through Microsoft’s online TechNet library.

Resource containers are described by Banga, Druschel, and Mogul [10].
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Chapter 4

Synchronization and
Deadlocks

4.1 Introduction

In Chapters [2| and [3] you have seen how an operating system can support
concurrent threads of execution. Now the time has come to consider how
the system supports controlled interaction between those threads. Because
threads running at the same time on the same computer can inherently
interact by reading and writing a common set of memory locations, the hard
part is providing control. In particular, this chapter will examine control
over the relative timing of execution steps that take place in differing threads.

Recall that the scheduler is granted considerable authority to temporar-
ily preempt the execution of a thread and dispatch another thread. The
scheduler may do so in response to unpredictable external events, such as
how long an I/O request takes to complete. Therefore, the computational
steps taken by two (or more) threads will be interleaved in a quite un-
predictable manner, unless the programmer has taken explicit measures to
control the order of events. Those control measures are known as synchro-
nization. The usual way for synchronization to control event ordering is by
causing one thread to wait for another.

In Section I will provide a more detailed case for why synchroniza-
tion is needed by describing the problems that can occur when interacting
threads are not properly synchronized. The uncontrolled interactions are
called races. By examining some typical races, I will illustrate the need for
one particular form of synchronization, mutual exclusion. Mutual exclusion
ensures that only one thread at a time can operate on a shared data struc-
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ture or other resource. Section [4.3| presents two closely related ways mutual
exclusion can be obtained. They are known as mutexes and monitors.

After covering mutual exclusion, I will turn to other, more general syn-
chronization challenges and to mechanisms that can address those chal-
lenges. To take one example, you may want to ensure that some memory
locations are read after they have been filled with useful values, rather than
before. I devote Section to enumerating several of the most common
synchronization patterns other than mutual exclusion. Afterward, I devote
Sections and to two popular mechanisms used to handle these sit-
uations. One, condition variables, is an important extension to monitors;
the combination of monitors with condition variables allows many situations
to be cleanly handled. The other, semaphores, is an old favorite because it
provides a single, simple mechanism that in principle suffices for all synchro-
nization problems. However, semaphores can be hard to understand and use
correctly.

Synchronization solves the problem of races, but it can create a new
problem of its own: deadlock. Recall that synchronization typically involves
making threads wait; for example, in mutual exclusion, a thread may need
to wait its turn in order to enforce the rule of one at a time. Deadlock results
when a cycle of waiting threads forms; for example, thread A waits for thread
B, which happens to be waiting for thread A, as shown in Figure[d.1] Because
this pathology results from waiting, I will address it and three of the most
practical cures in Section [4.7] after completing the study of waiting-based
means of synchronization.

Waiting also interacts with scheduling (the topic of Chapter [3]) in some
interesting ways. In particular, unless special precautions are taken, syn-
chronization mechanisms can subvert priority scheduling, allowing a low-
priority thread to run while a high-priority thread waits. Therefore, in
Section I will briefly consider the interactions between synchronization
and scheduling, as well as what can be done to tame them.

Thread A Thread B
waits for
T waitsfor  _—

Figure 4.1: Deadlock results when threads wait for one another in a complete
cycle. In this simple example, thread A is waiting for thread B, which is
waiting for thread A.
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Although sections and address the problems of deadlock and
unwanted scheduling interactions, the root cause of these problems is also
worth considering. The underlying problem is that one thread can block
the progress of another thread, which is undesirable even in the absence
of such dramatic symptoms as deadlock. After all, a blocked thread can’t
take advantage of available processing power to produce useful results. Al-
ternative, nonblocking synchronization techniques have become increasingly
important as the number of processor cores in a typical computer system has
grown. Section briefly addresses this topic, showing how data structures
can safely support concurrent threads without ever blocking progress.

Finally, I conclude the chapter in Section by looking at security
issues related to synchronization. In particular, I show how subtle synchro-
nization bugs, which may nearly never cause a malfunction unless provoked,
can be exploited by an attacker in order to circumvent the system’s normal
security policies. After this concluding section, I provide exercises, program-
ming and exploration projects, and notes.

Despite the wide range of synchronization-related topics I cover in this
chapter, there are two I leave for later chapters. Atomic transactions are
a particularly sophisticated and important synchronization pattern, com-
monly encountered in middleware; therefore, I devote Chapter [5| entirely to
them. Also, explicitly passing a message between threads (for example, via
a network) provides synchronization as well as communication, because the
message cannot be received until after it has been transmitted. Despite this
synchronization role, I chose to address various forms of message passing in
Chapters [9] and the chapters related to communication.

4.2 Races and the Need for Mutual Exclusion

When two or more threads operate on a shared data structure, some very
strange malfunctions can occur if the timing of the threads turns out pre-
cisely so that they interfere with one another. For example, consider the
following code that might appear in a sellTicket procedure (for an event
without assigned seats):

if (seatsRemaining > 0){
dispenseTicket();
seatsRemaining = seatsRemaining - 1;
} else
displaySorrySoldOut ) ;
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On the surface, this code looks like it should never sell more tickets than
seats are available. However, what happens if multiple threads (perhaps
controlling different points of sale) are executing the same code? Most of
the time, all will be well. Even if two people try to buy tickets at what
humans perceive as the same moment, on the time scale of the computer,
probably one will happen first and the other second, as shown in Figure 4.2
In that case, all is well. However, once in a blue moon, the timing may be
exactly wrong, and the following scenario results, as shown in Figure 4.3

1. Thread A checks seatsRemaining > 0. Because seatsRemaining is
1, the test succeeds. Thread A will take the first branch of the if.

2. Thread B checks seatsRemaining > 0. Because seatsRemaining is
1, the test succeeds. Thread B will take the first branch of the if.

3. Thread A dispenses a ticket and decreases seatsRemaining to 0.
4. Thread B dispenses a ticket and decreases seatsRemaining to —1.
5. One customer winds up sitting on the lap of another.

Of course, there are plenty of other equally unlikely scenarios that result
in misbehavior. In Exercise 4.1, you can come up with a scenario where,
starting with seatsRemaining being 2, two threads each dispense a ticket,
but seatsRemaining is left as 1 rather than 0.

These scenarios are examples of races. In a race, two threads use the
same data structure, without any mechanism to ensure only one thread
uses the data structure at a time. If either thread precedes the other, all
is well. However, if the two are interleaved, the program malfunctions.
Generally, the malfunction can be expressed as some invariant property

Thread A Thread B
if (seatsRemaining > 0)
dispenseTicket();

seatsRemaining=seatsRemaining-1;
if (seatsRemaining > 0)...else
displaySorrySoldOut () ;

Figure 4.2: Even if two humans think they are trying to buy the last ticket
at the same time, chances are good that one’s thread (thread A in this
example) will run before the other’s. Thread B will then correctly discover
that no seats remain.
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Thread A Thread B

if (seatsRemaining > 0)
if (seatsRemaining > 0)
dispenseTicket () ;
dispenseTicket();
seatsRemaining=seatsRemaining-1;

seatsRemaining=seatsRemaining-1;

Figure 4.3: If threads A and B are interleaved, both can act as though there
were a ticket left to sell, even though only one really exists for the two of
them.

being violated. In the ticket-sales example, the invariant is that the value
of seatsRemaining should be nonnegative and when added to the number
of tickets dispensed should equal the total number of seats. (This invariant
assumes that seatsRemaining was initialized to the total number of seats.)

When an invariant involves more than one variable, a race can result even
if one of the threads only reads the variables, without modifying them. For
example, suppose there are two variables, one recording how many tickets
have been sold and the other recording the amount of cash in the money
drawer. There should be an invariant relation between these: the number
of tickets sold times the price per ticket, plus the amount of starting cash,
should equal the cash on hand. Suppose one thread is in the midst of selling
a ticket. It has updated one of the variables, but not yet the other. If at
exactly that moment another thread chooses to run an audit function, which
inspects the values of the two variables, it will find them in an inconsistent
state.

That inconsistency may not sound so terrible, but what if a similar incon-
sistency occurred in a medical setting, and one variable recorded the drug to
administer, while the other recorded the dose? Can you see how dangerous
an inconsistency could be? Something very much like that happened in a
radiation therapy machine, the Therac-25, with occasionally lethal conse-
quences. (Worse, some patients suffered terrible but not immediately lethal
injuries and lingered for some time in excruciating, intractable pain.)

From the ticket-sales example, you can see that having two threads car-
rying out operations on the same data structure is harmless, as long as there
never are two operations under way at the same time. In other words, the
interleaving of the threads’ execution needs to be at the granularity of com-
plete operations, such as selling a ticket or auditing the cash drawer. When
interleaving the operations, it’s OK if one thread performs several complete
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operations in a row; the threads don’t need to alternate back and forth.
However, each sale or audit should be completed without interruption.

The reason why any interleaving of complete operations is safe is because
each is designed to both rely on the invariant and preserve it. Provided that
you initially construct the data structure in a state where the invariant
holds, any sequence whatsoever of invariant-preserving operations will leave
the invariant intact.

What is needed, then, is a synchronization mechanism that allows one
thread to obtain private access to the data structure before it begins work,
thereby excluding all other threads from operating on that structure. The
conventional metaphor is to say that the thread locks the data structure.
When the thread that locked the structure is done, it unlocks, allowing
another thread to take its turn. Because any thread in the midst of one
of the operations temporarily excludes all the others, this arrangement is
called mutual exclusion. Mutual exclusion establishes the granularity at
which threads may be interleaved by the scheduler.

4.3 Mutexes and Monitors

As you saw in Section threads that share data structures need to have
a mechanism for obtaining exclusive access to those structures. A program-
mer can arrange for this exclusive access by creating a special lock object
associated with each shared data structure. The lock can only be locked
by one thread at a time. A thread that has locked the lock is said to hold
the lock, even though that vocabulary has no obvious connection to the
metaphor of real-world locks. If the threads operate on (or even examine)
the data structure only when holding the corresponding lock, this discipline
will prevent races.

To support this form of race prevention, operating systems and middle-
ware generally provide mutual exclusion locks. Because the name mutual
exclusion lock is rather ungainly, something shorter is generally used. Some
programmers simply talk of locks, but that can lead to confusion because
other synchronization mechanisms are also called locks. (For example, I in-
troduce readers/writers locks in Section |4.4.2|) Therefore, the name mutex
has become popular as a shortened form of mutual exclusion lock. In par-
ticular, the POSIX standard refers to mutexes. Therefore, I will use that
name in this book as well.

Section [4.3.1] presents the POSIX application programming interface
(API) for mutexes. Section [4.3.2] presents an alternative, more structured
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interface to mutexes, known as monitors. Finally, Section [4.3.3| shows what
lies behind both of those interfaces by explaining the mechanisms typically
used to implement mutexes.

4.3.1 The Mutex Application Programing Interface

A mutex can be in either of two states: locked (that is, held by some thread),
or unlocked (that is, not held by any thread). Any implementation of mu-
texes must have some way to create a mutex and initialize its state. Con-
ventionally, mutexes are initialized to the unlocked state. As a minimum,
there must be two other operations: one to lock a mutex, and one to unlock
it.

The lock and unlock operations are much less symmetrical than they
sound. The unlock operation can be applied only when the mutex is locked;
this operation does its job and returns, without making the calling thread
wait. The lock operation, on the other hand, can be invoked even when
the lock is already locked. For this reason, the calling thread may need to
wait, as shown in Figure £.4,. When a thread invokes the lock operation on
a mutex, and that mutex is already in the locked state, the thread is made
to wait until another thread has unlocked the mutex. At that point, the
thread that wanted to lock the mutex can resume execution, find the mutex
unlocked, lock it, and proceed.

If more than one thread is trying to lock the same mutex, only one of
them will switch the mutex from unlocked to locked; that thread will be
allowed to proceed. The others will wait until the mutex is again unlocked.
This behavior of the lock operation provides mutual exclusion. For a thread
to proceed past the point where it invokes the lock operation, it must be the
single thread that succeeds in switching the mutex from unlocked to locked.
Until the thread unlocks the mutex, one can say it holds the mutex (that is,

lock try to lock

Wait for another
thread to unlock
\_/ v

unlock finish locking

Figure 4.4: Locking an unlocked mutex and unlocking a locked one change
the mutex’s state. However, a thread can also try to lock an already-locked
mutex. In this case, the thread waits and acquires the mutex lock when
another thread unlocks it.
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has exclusive rights) and can safely operate on the associated data structure
in a race-free fashion.

This freedom from races exists regardless which one of the waiting threads
is chosen as the one to lock the mutex. However, the question of which thread
goes first may matter for other reasons; I return to it in Section

Besides the basic operations to initialize a mutex, lock it, and unlock it,
there may be other, less essential, operations as well. For example, there
may be one to test whether a mutex is immediately lockable without waiting,
and then to lock it if it is so. For systems that rely on manual reclamation
of memory, there may also be an operation to destroy a mutex when it will
no longer be used.

Individual operating systems and middleware systems provide mutex
APIs that fit the general pattern I described, with varying details. In order
to see one concrete example of an API, I will present the mutex operations
included in the POSIX standard. Because this is a standard, many different
operating systems provide this API, as well as perhaps other system-specific
APIs.

In the POSIX API, you can declare my_mutex to be a mutex and initialize
it with the default attributes as follows:

pthread_mutex_t my_mutex;
pthread_mutex_init (&my_mutex, 0);

A thread that wants to lock the mutex, operate on the associated data
structure, and then unlock the mutex would do the following (perhaps with
some error-checking added):

pthread_mutex_lock(&my_mutex) ;
// operate on the protected data structure
pthread_mutex_unlock(&my_mutex) ;

As an example, Figure [4.5] shows the key procedures from the ticket sales
example, written in C using the POSIX API. When all threads are done
using the mutex (leaving it in the unlocked state), the programmer is ex-
pected to destroy it, so that any underlying memory can be reclaimed. This
is done by executing the following procedure call:

pthread_mutex_destroy (&my_mutex) ;

POSIX also provides a couple variants on pthread_mutex_lock that are
useful under particular circumstances. One, pthread_mutex_trylock, dif-
fers in that it will never wait to acquire a mutex. Instead, it returns an error
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void sellTicket(){
pthread_mutex_lock(&my_mutex) ;
if (seatsRemaining > 0){
dispenseTicket();
seatsRemaining = seatsRemaining - 1;
cashOnHand = cashOnHand + PRICE;
} else
displaySorrySoldOut () ;
pthread_mutex_unlock(&my_mutex) ;

}

void audit(){
pthread_mutex_lock(&my_mutex) ;
int revenue = (TOTAL_SEATS - seatsRemaining) * PRICE;
if (cashOnHand != revenue + STARTING_CASH){
printf("Cash fails to match.\n");
exit(1);
}

pthread_mutex_unlock(&my_mutex) ;

Figure 4.5: Each of these procedures begins by locking my mutex and ends by
unlocking it. Therefore, they will never race, even if called from concurrent
threads. Additional code not shown here (perhaps in the main procedure)
would first initialize my mutex.
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code if unable to immediately acquire the lock. The other, pthread_mutex_timedlock,
allows the programmer to specify a maximum amount of time to wait. If
the mutex cannot be acquired within that time, pthread_mutex_timedlock
returns an error code.

Beyond their wide availability, another reason why POSIX mutexes are
worth studying is that the programmer is allowed to choose among several
variants, which provide different answers to two questions about exceptional
circumstances. Other mutex APIs might include one specific answer to these
questions, rather than exposing the full range of possibilities. The questions
at issue are as follows:

e What happens if a thread tries to unlock a mutex that is unlocked, or
that was locked by a different thread?

e What happens if a thread tries to lock a mutex that it already holds?
(Note that if the thread were to wait for itself to unlock the mutex,
this situation would constitute the simplest possible case of a deadlock.
The cycle of waiting threads would consist of a single thread, waiting
for itself.)

The POSIX standard allows the programmer to select from four different
types of mutexes, each of which answers these two questions in a different
way:

PTHREAD_MUTEX_DEFAULT If a thread tries to lock a mutex it already holds
or unlock one it doesn’t hold, all bets are off as to what will happen.
The programmer has a responsibility never to make either of these
attempts. Different POSIX-compliant systems may behave differently.

PTHREAD MUTEX_ERROR_CHECK If a thread tries to lock a mutex that it already
holds, or unlock a mutex that it doesn’t hold, the operation returns
an error code.

PTHREAD_MUTEX_NORMAL If a thread tries to lock a mutex that it already
holds, it goes into a deadlock situation, waiting for itself to unlock
the mutex, just as it would wait for any other thread. If a thread
tries to unlock a mutex that it doesn’t hold, all bets are off; each
POSIX-compliant system is free to respond however it likes.

PTHREAD_MUTEX_RECURSIVE If a thread tries to unlock a mutex that it doesn’t
hold, the operation returns an error code. If a thread tries to lock a
mutex that it already holds, the system simply increments a count
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of how many times the thread has locked the mutex and allows the
thread to proceed. When the thread invokes the unlock operation, the
counter is decremented, and only when it reaches 0 is the mutex really
unlocked.

If you want to provoke a debate among experts on concurrent program-
ming, ask their opinion of recursive locking, that is, of the mutex behavior
specified by the POSIX option PTHREAD _MUTEX_RECURSIVE. On the one hand,
recursive locking gets rid of one especially silly class of deadlocks, in which a
thread waits for a mutex it already holds. On the other hand, a programmer
with recursive locking available may not follow as disciplined a development
approach. In particular, the programmer may not keep track of exactly
which locks are held at each point in the program’s execution.

4.3.2 Monitors: A More Structured Interface to Mutexes

Object-oriented programming involves packaging together data structures
with the procedures that operate on them. In this context, mutexes can be
used in a very rigidly structured way:

e All state variables within an object should be kept private, accessible
only to code associated with that object.

e Every object (that might be shared between threads) should contain a
mutex as an additional field, beyond those fields containing the object’s
state.

e Every method of an object (except private ones used internally) should
start by locking that object’s mutex and end by unlocking the mutex
immediately before returning.

If these three rules are followed, then it will be impossible for two threads
to race on the state of an object, because all access to the object’s state will
be protected by the object’s mutex.

Programmers can follow these rules manually, or the programming lan-
guage can provide automatic support for the rules. Automation ensures that
the rules are consistently followed. It also means the source program will
not be cluttered with mutex clichés, and hence will be more readable.

An object that automatically follows the mutex rules is called a moni-
tor. Monitors are found in some programming languages, such as Concurrent
Pascal, that have been used in research settings without becoming commer-
cially popular. In these languages, using monitors can be as simple as using
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the keyword monitor at the beginning of a declaration for a class of objects.
All public methods will then automatically lock and unlock an automatically
supplied mutex. (Monitor languages also support another synchronization
feature, condition variables, which I discuss in Section [4.5])

Although true monitors have not become popular, the Java programming
language provides a close approximation. To achieve monitor-style synchro-
nization, the Java programmer needs to exercise some self-discipline, but
less than with raw mutexes. More importantly, the resulting Java program
is essentially as uncluttered as a true monitor program would be; all that is
added is one keyword, synchronized, at the declaration of each nonprivate
method.

Each Java object automatically has a mutex associated with it, of the
recursively lockable kind. The programmer can choose to lock any object’s
mutex for the duration of any block of code by using a synchronized state-
ment:

synchronized(someObject){
// the code to do while holding someObject’s mutex
}

Note that in this case, the code need not be operating on the state of
someObject; nor does this code need to be in a method associated with
that object. In other words, the synchronized statement is essentially as
flexible as using raw mutexes, with the one key advantage that locking and
unlocking are automatically paired. This advantage is important, because it
eliminates one big class of programming errors. Programmers often forget to
unlock mutexes under exceptional circumstances. For example, a procedure
may lock a mutex at the beginning and unlock it at the end. However, in
between may come an if statement that can terminate the procedure with
the mutex still locked.

Although the synchronized statement is flexible, typical Java programs
don’t use it much. Instead, programmers add the keyword synchronized
to the declaration of public methods. For example, a TicketVendor class
might follow the outline in Figure Marking a method synchronized is
equivalent to wrapping the entire body of that method in a synchronized
statement:

synchronized(this){
// the body
3
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public class TicketVendor {
private int seatsRemaining, cashOnHand;
private static final int PRICE = 1000;

public synchronized void sellTicket(){
if (seatsRemaining > 0){
dispenseTicket();
seatsRemaining = seatsRemaining - 1;
cashOnHand = cashOnHand + PRICE;
} else
displaySorrySoldOut () ;

public synchronized void audit(){
// check seatsRemaining, cashOnHand

}

private void dispenseTicket(){
/...
}

private void displaySorrySoldOut(){
/...
}

public TicketVendor (){

/] ...
}

Figure 4.6: Outline of a monitor-style class in Java
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In other words, a synchronized method on an object will be executed while
holding that object’s mutex. For example, the sel1Ticket method is syn-
chronized, so if two different threads invoke it, one will be served while the
other waits its turn, because the sellTicket method is implicitly locking a
mutex upon entry and unlocking it upon return, just as was done explicitly
in the POSIX version of Figure Similarly, a thread executing the audit
method will need to wait until no ticket sale is in progress, because this
method is also marked synchronized, and so acquires the same mutex.

In order to program in a monitor style in Java, you need to be disciplined
in your use of the private and public keywords (including making all state
private), and you need to mark all the public methods as synchronized.

4.3.3 Underlying Mechanisms for Mutexes

In this subsection, I will show how mutexes typically operate behind the
scenes. I start with a version that functions correctly, but is inefficient, and
then show how to build a more efficient version on top of it, and then a yet
more efficient version on top of that. Keep in mind that I will not throw away
my first two versions: they play a critical role in the final version. For sim-
plicity, all three versions will be of the PTHREAD_MUTEX_NORMAL kind; a dead-
lock results if a thread tries to lock a mutex it already holds. In Exercise|4.3
you can figure out the changes needed for PTHREAD_MUTEX_RECURSIVE.

The three versions of mutex are called the basic spinlock, cache-conscious
spinlock, and queuing mutex, in increasing order of sophistication. The
meaning of these names will become apparent as I explain the functioning
of each kind of mutex. I will start with the basic spinlock.

All modern processor architectures have at least one instruction that
can be used to both change the contents of a memory location and obtain
information about the previous contents of the location. Crucially, these in-
structions are executed atomically, that is, as an indivisible unit that cannot
be broken up by the arrival of an interrupt nor interleaved with the execu-
tion of an instruction on another processor. The details of these instructions
vary; for concreteness, I will use the exchange operation, which atomically
swaps the contents of a register with the contents of a memory location.

Suppose I represent a basic spinlock as a memory location that contains
1 if the mutex is unlocked and 0 if the mutex is locked. The unlock operation
can be trivial: to unlock a mutex, just store 1 into it. The lock operation
is a bit trickier and uses the atomic exchange operation; I can express it in
pseudocode, as shown in Figure The key idea here is to keep looping
until the thread succeeds in changing the mutex from 1 to 0. So long as
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to lock mutex:
let temp = 0
repeat
atomically exchange temp and mutex
until temp = 1

Figure 4.7: The basic spinlock version of a mutex is a memory location
storing 1 for unlocked and 0 for locked. Locking the mutex consists of
repeatedly exchanging a register containing 0 with the memory location
until the location is changed from 1 to 0.

some other thread holds the lock, the thread keeps swapping one 0 with
another 0, which does no harm. This process is illustrated in Figure [4.8

To understand the motivation behind the cache-conscious spinlock, you
need to know a little about cache coherence protocols in multiprocessor
systems. Copies of a given block of memory can reside in several different
processors’ caches, as long as the processors only read from the memory
locations. As soon as one processor wants to write into the cache block,
however, some communication between the caches is necessary so that other
processors don’t read out-of-date values. Most typically, the cache where the
writing occurs invalidates all the other caches’ copies so that it has exclusive
ownership. If one of the other processors now wants to write, the block needs
to be flushed out of the first cache and loaded exclusively into the second.
If the two processors keep alternately writing into the same block, there
will be continual traffic on the memory interconnect as the cache block is
transferred back and forth between the two caches.

This is exactly what will happen with the basic spinlock version of mutex
locking if two threads (on two processors) are both waiting for the same lock.
The atomic exchange instructions on the two processors will both be writing
into the cache block containing the spinlock. Contention for a mutex may not
happen often. When it does, however, the performance will be sufficiently
terrible to motivate an improvement. Cache-conscious spinlocks will use
the same simple approach as basic spinlocks when there is no contention,
but will get rid of the cache coherence traffic while waiting for a contended
mutex.

In order to allow multiple processors to wait for a lock without generating
traffic outside their individual caches, they must be waiting while using only
reads of the mutex. When they see the mutex become unlocked, they then
need to try grabbing it with an atomic exchange. This approach leads to the
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Operation Result
store Mutex Mutex
1
Unlocking: /—\E
Temp  exchange Mutex Temp Mutex
0
Successful locking: 1 0
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Unsuccessful locking 0 0 0

(try again):

Figure 4.8: Unlocking a basic spinlock consists of storing a 1 into it. Locking
it consists of storing a 0 into it using an atomic exchange instruction. The
exchange instruction allows the locking thread to verify that the value in
memory really was changed from 1 to 0. If not, the thread repeats the
attempt.

pseudocode shown in Figure Notice that in the common case where the
mutex can be acquired immediately, this version acts just like the original.
Only if the attempt to acquire the mutex fails is anything done differently.
Even then, the mutex will eventually be acquired the same way as before.

The two versions of mutexes that I have presented thus far share one key
property, which explains why both are called spinlocks. They both engage
in busy waiting if the mutex is not immediately available. Recall from my
discussion of scheduling that busy waiting means waiting by continually
executing instructions that check for the awaited event. A mutex that uses
busy waiting is called a spinlock. Even fancier versions of spinlocks exist, as
described in the end-of-chapter notes.

The alternative to busy waiting is to notify the operating system that the
thread needs to wait. The operating system can then change the thread’s
state to waiting and move it to a wait queue, where it is not eligible for
time on the processor. Instead, the scheduler will use the processor to run
other threads. When the mutex is unlocked, the waiting thread can be made
runnable again. Because this form of mutex makes use of a wait queue, it
is called a queuing mutex.

Spinlocks are inefficient, for the same reason as any busy waiting is
inefficient. The thread does not make any more headway, no matter how
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to lock mutex:
let temp = 0
repeat
atomically exchange temp and mutex
if temp = O then
while mutex = 0
do nothing
until temp = 1

Figure 4.9: Cache-conscious spinlocks are represented the same way as basic
spinlocks, using a single memory location. However, the lock operation now
uses ordinary read instructions in place of most of the atomic exchanges
while waiting for the mutex to be unlocked.

many times it spins around its loop. Therefore, using the processor for a
different thread would benefit that other thread without harming the waiting
one.

However, there is one flaw in this argument. There is some overhead
cost for notifying the operating system of the desire to wait, changing the
thread’s state, and doing a context switch, with the attendant loss of cache
locality. Thus, in a situation where the spinlock needs to spin only briefly
before finding the mutex unlocked, the thread might actually waste less time
busy waiting than it would waste getting out of other threads’ ways. The
relative efficiency of spinlocks and queuing mutexes depends on how long
the thread needs to wait before the mutex becomes available.

For this reason, spinlocks are appropriate to use for mutexes that are
held only very briefly, and hence should be quickly acquirable. As an ex-
ample, the Linux kernel uses spinlocks to protect many of its internal data
structures during the brief operations on them. For example, I mentioned
that the scheduler keeps the runnable threads in a run queue. Whenever
the scheduler wants to insert a thread into this data structure, or otherwise
operate on it, it locks a spinlock, does the brief operation, and then unlocks
the spinlock.

Queuing mutexes are still needed for those cases where a thread might
hold a mutex a long time—long enough that other contenders shouldn’t
busy wait. These mutexes will be more complex. Rather than being stored
in a single memory location (as with spinlocks), each mutex will have three
components:
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e A memory location used to record the mutex’s state, 1 for unlocked
or 0 for locked.

e A list of threads waiting to acquire the mutex. This list is what allows
the scheduler to place the threads in a waiting state, instead of busy
waiting. Using the terminology of Chapter [3] this list is a wait queue.

e A cache-conscious spinlock, used to protect against races in operations
on the mutex itself.

In my pseudocode, I will refer to these three components as mutex.state,
mutex.waiters, and mutex.spinlock, respectively.

Under these assumptions, the locking and unlocking operations can be
performed as shown in the pseudocode of Figures and Figures
and [£.13] illustrate the functioning of these operations. One important
feature to note in this mutex design concerns what happens when a thread
performs the unlock operation on a mutex that has one or more threads in
the waiters list. As you can see in Figure the mutex’s state variable
is not changed from the locked state (0) to the unlocked state (1). Instead,
the mutex is left locked, and one of the waiting threads is woken up. In
other words, the locked mutex is passed directly from one thread to another,
without ever really being unlocked. In Section I will explain how this
design is partially responsible for the so-called convoy phenomenon, which I
describe there. In that same section, I will also present an alternative design
for mutexes that puts the mutex into the unlocked state.

4.4 Other Synchronization Patterns

Recall that synchronization refers to any form of control over the relative
timing of two or more threads. As such, synchronization includes more than
just mutual exclusion; a programmer may want to impose some restriction
on relative timing other than the rule of one thread at a time. In this
section, I present three other patterns of synchronization that crop up over
and over again in many applications: bounded buffers, readers/writers locks,
and barriers. Sections [£.4.1] through [£.4.3] will just describe the desired
synchronization; Sections and show techniques that can be used to
achieve the synchronization.
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to lock mutex:
lock mutex.spinlock (in cache-conscious fashion)
if mutex.state = 1 then
let mutex.state = 0
unlock mutex.spinlock
else
add current thread to mutex.waiters
remove current thread from runnable threads
unlock mutex.spinlock
yield to a runnable thread

Figure 4.10: An attempt to lock a queuing mutex that is already in the
locked state causes the thread to join the wait queue, mutex.waiters.

to unlock mutex:
lock mutex.spinlock (in cache-conscious fashion)
if mutex.waiters is empty then
let mutex.state =1
else
move one thread from mutex.waiters to runnable
unlock mutex.spinlock

Figure 4.11: If there is any waiting thread, the unlock operation on a queuing
mutex causes a thread to become runnable. Note that in this case, the
mutex is left in the locked state; effectively, the locked mutex is being passed
directly from one thread to another.
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Operation Result
Mutex Mutex
Thread State: 1 Thread [gate: 0
Waiters: Waiters:
locks
Mutex Mutex
Thread State: 0 State: O
locks Waiters: Thread
Waiters:
\_/

Figure 4.12: Locking a queuing mutex that is unlocked simply changes the
mutex’s state. Locking an already-locked queuing mutex, on the other hand,
puts the thread into the waiters list.

Operation Result
Mutex Mutex
Thread State: 0 Thread fgiate; 1
unlocks Waiters: Waiters:
Mutex
Thread A State: 0 Thread A [state: 0 Thread B
Thread B Waiters:
unlocks
Waiters:
~—__

Figure 4.13: Unlocking a queuing mutex with no waiting threads simply
changes the mutex’s state. Unlocking a queuing mutex with waiting threads,
on the other hand, leaves the state set to locked but causes one of the waiting
threads to start running again, having acquired the lock.
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4.4.1 Bounded Buffers

Often, two threads are linked together in a processing pipeline. That is, the
first thread produces a sequence of values that are consumed by the second
thread. For example, the first thread may be extracting all the textual words
from a document (by skipping over the formatting codes) and passing those
words to a second thread that speaks the words aloud.

One simple way to organize the processing would be by strict alternation
between the producing and consuming threads. In the preceding example,
the first thread would extract a word, and then wait while the second thread
converted it into sound. The second thread would then wait while the first
thread extracted the next word. However, this approach doesn’t yield any
concurrency: only one thread is runnable at a time. This lack of concur-
rency may result in suboptimal performance if the computer system has two
processors, or if one of the threads spends a lot of time waiting for an I/O
device.

Instead, consider running the producer and the consumer concurrently.
Every time the producer has a new value ready, the producer will store
the value into an intermediate storage area, called a buffer. Every time the
consumer is ready for the next value, it will retrieve the value from the buffer.
Under normal circumstances, each can operate at its own pace. However,
if the consumer goes to the buffer to retrieve a value and finds the buffer
empty, the consumer will need to wait for the producer to catch up. Also,
if you want to limit the size of the buffer (that is, to use a bounded buffer),
you need to make the producer wait if it gets too far ahead of the consumer
and fills the buffer. Putting these two synchronization restrictions in place
ensures that over the long haul, the rate of the two threads will match up,
although over the short term, either may run faster than the other.

You should be familiar with the bounded buffer pattern from businesses
in the real world. For example, the cooks at a fast-food restaurant fry burg-
ers concurrently with the cashiers selling them. In between the two is a
bounded buffer of already-cooked burgers. The exact number of burgers in
the buffer will grow or shrink somewhat as one group of workers is tem-
porarily a little faster than the other. Only under extreme circumstances
does one group of workers have to wait for the other. Figure illustrates
a situation where no one needs to wait.

One easy place to see bounded buffers at work in computer systems is the
pipe feature built into UNIX-family operating systems, including Linux and
Mac OS X. (Microsoft Windows also now has an analogous feature.) Pipes
allow the output produced by one process to serve as input for another. For
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Bounded
buffer of

Grill Cashier

Figure 4.14: A cook fries burgers and places them in a bounded buffer,
queued up for later sale. A cashier takes burgers from the buffer to sell. If
there are none available, the cashier waits. Similarly, if the buffer area is
full, the cook takes a break from frying burgers.

example, on a Mac OS X system, you could open a terminal window with a
shell in it and give the following command:

1ls | say

This runs two programs concurrently. The first, 1s, lists the files in your
current directory. The second one, say, converts its textual input into speech
and plays it over the computer’s speakers. In the shell command, the vertical
bar character (|) indicates the pipe from the first program to the second.
The net result is a spoken listing of your files.

A more mundane version of this example works not only on Mac OS X,
but also on other UNIX-family systems such as Linux:

ls | tr a-z A-Z

Again, this runs two programs concurrently. This time the second one, tr,
copies characters from its input to its output, with some changes (transliter-
ations) along the way; in this case, replacing lowercase letters a-z with the
corresponding uppercase letters A-Z. The net result is an uppercase listing
of your files. The file listing may get ahead of the transliteration, as long
as it doesn’t overflow a buffer the operating system provides for the pipe.
Once there is a backlog of listed files in the buffer, the transliteration can
run as fast as it wants until it exhausts that backlog.



4.4. OTHER SYNCHRONIZATION PATTERNS 115

4.4.2 Readers/Writers Locks

My next example of a synchronization pattern is actually quite similar to
mutual exclusion. Recall that in the ticket-sales example, the audit function
needed to acquire the mutex, even though auditing is a read-only operation,
in order to make sure that the audit read a consistent combination of state
variables. That design achieved correctness, but at the cost of needlessly
limiting concurrency: it prevented two audits from being underway at the
same time, even though two (or more) read-only operations cannot possibly
interfere with each other. My goal now is to rectify that problem.

A readers/writers lock is much like a mutex, except that when a thread
locks the lock, it specifies whether it is planning to do any writing to the
protected data structure or only reading from it. Just as with a mutex,
the lock operation may not immediately complete; instead, it waits until
such time as the lock can be acquired. The difference is that any number of
readers can hold the lock at the same time, as shown in Figure they
will not wait for each other. A reader will wait, however, if a writer holds
the lock. A writer will wait if the lock is held by any other thread, whether
by another writer or by one or more readers.

Readers/writers locks are particularly valuable in situations where some
of the read-only operations are time consuming, as when reading a file stored
on disk. This is especially true if many readers are expected. The choice
between a mutex and a readers/writers lock is a performance trade-off.
Because the mutex is simpler, it has lower overhead. However, the read-
ers/writers lock may pay for its overhead by allowing more concurrency.

One interesting design question arises if a readers/writers lock is held by
one or more readers and has one or more writers waiting. Suppose a new
reader tries to acquire the lock. Should it be allowed to, or should it be
forced to wait until after the writers? On the surface, there seems to be no
reason for the reader to wait, because it can coexist with the existing readers,
thereby achieving greater concurrency. The problem is that an overlapping
succession of readers can keep the writers waiting arbitrarily long. The
writers could wind up waiting even when the only remaining readers arrived
long after the writers did. This is a form of starvation, in that a thread is
unfairly prevented from running by other threads. To prevent this particular
kind of starvation, some versions of readers/writers locks make new readers
wait until after the waiting writers.

In Section you will learn how you could build readers/writers locks
from more primitive synchronization mechanisms. However, because read-
ers/writers locks are so generally useful, they are already provided by many
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Protected data

Readers structure Writers
g wait —— g
34_— wait ———— g
g w<_§
34— wait wait 4—3
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Figure 4.15: A readers/writers lock can be held either by any number of
readers or by one writer. When the lock is held by readers, all the reader
threads can read the protected data structure concurrently.

systems, so you may never actually have to build them yourself. The POSIX
standard, for example, includes readers/writers locks with procedures such

as pthread_rwlock_init, pthread_rwlock_rdlock, pthread_rwlock_wrlock,
and pthread_rwlock_unlock. The POSIX standard leaves it up to each in-
dividual system how to prioritize new readers versus waiting writers.

The POSIX standard also includes a more specialized form of read-
ers/writers locks specifically associated with files. This reflects my earlier
comment that readers/writers locking is especially valuable when reading
may be time consuming, as with a file stored on disk. In the POSIX stan-
dard, file locks are available only through the complex fcntl procedure.
However, most UNIX-family operating systems also provide a simpler inter-
face, flock.

4.4.3 Barriers

Barrier synchronization is the last common synchronization pattern I will
discuss. Barriers are most commonly used in programs that do large-scale
numerical calculations for scientific or engineering applications, such as sim-
ulating ocean currents. However, they may also crop up in other applica-
tions, as long as there is a requirement for all threads in a group to finish one
phase of the computation before any of them moves on to the next phase.
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In scientific computations, the threads are often dividing up the processing
of a large matrix. For example, ten threads may each process 200 rows
of a 2000-row matrix. The requirement for all threads to finish one phase
of processing before starting the next comes from the fact that the overall
computation is a sequence of matrix operations; parallel processing occurs
only within each matrix operation.

When a barrier is created (initialized), the programmer specifies how
many threads will be sharing it. Each of the threads completes the first phase
of the computation and then invokes the barrier’s wait operation. For most
of the threads, the wait operation does not immediately return; therefore,
the thread calling it cannot immediately proceed. The one exception is
whichever thread is the last to call the wait operation. The barrier can tell
which thread is the last one, because the programmer specified how many
threads there are. When this last thread invokes the wait operation, the
wait operation immediately returns. Moreover, all the other waiting threads
finally have their wait operations also return, as illustrated in Figure [4.16
Thus, they can now all proceed on to the second phase of the computation.
Typically, the same barrier can then be reused between the second and third
phases, and so forth. (In other words, the barrier reinitializes its state once
it releases all the waiting threads.)

Just as with readers/writers locks, you will see how barriers can be de-
fined in terms of more general synchronization mechanisms. However, once
again there is little reason to do so in practice, because barriers are provided
as part of POSIX and other widely available APIs.

4.5 Condition Variables

In order to solve synchronization problems, such as the three described in
Section [4:4] you need some mechanism that allows a thread to wait until
circumstances are appropriate for it to proceed. A producer may need to
wait for buffer space, or a consumer may need to wait for data. A reader may
need to wait until a writer has unlocked, or a writer may need to wait for
the last reader to unlock. A thread that has reached a barrier may need to
wait for all the other threads to do so. Each situation has its own condition
for which a thread must wait, and there are many other application-specific
conditions besides. (A video playback that has been paused might wait until
the user presses the pause button again.)

All these examples can be handled by using condition variables, a syn-
chronization mechanism that works in partnership with monitors or with
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Thread A Thread B Thread C Thread D

wait
. wait
. wait
. wait — all four start again

Figure 4.16: A barrier is created for a specific number of threads. In this
case, there are four. When the last of those threads invokes the wait opera-
tion, all the waiting threads in the group start running again.

mutexes used in the style of monitors. There are two basic operations on
a condition variable: wait and notify. (Some systems use the name signal
instead of notify.) A thread that finds circumstances not to its liking exe-
cutes the wait operation and thereby goes to sleep until such time as another
thread invokes the notify operation. For example, in a bounded buffer, the
producer might wait on a condition variable if it finds the buffer full. The
consumer, upon freeing up some space in the buffer, would invoke the notify
operation on that condition variable.

Before delving into all the important details and variants, a concrete ex-
ample may be helpful. Figure[d.17|shows the Java code for a BoundedBuffer
class.

Before I explain how this example works, and then return to a more
general discussion of condition variables, you should take a moment to con-
sider how you would test such a class. First, it might help to reduce the
size of the buffer, so that all qualitatively different situations can be tested
more quickly. Second, you need a test program that has multiple threads
doing insertions and retrievals, with some way to see the difference between
when each operation is started and when it completes. In the case of the
retrievals, you will also need to see that the retrieved values are correct.
Designing such a test program is surprisingly interesting; you can have this
experience in Programming Project [4.5

In Java, each object has a single condition variable automatically associ-
ated with it, just as it has a mutex. The wait method waits on the object’s
condition variable, and the notifyAll method wakes up all threads waiting
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public class BoundedBuffer {
private Object[] buffer = new Object[20]; // arbitrary size
private int numOccupied = O;
private int firstOccupied = 0;

/* invariant: O <= numOccupied <= buffer.length
0 <= firstOccupied < buffer.length
buffer[(firstOccupied + i) % buffer.length]
contains the (i+1)th oldest entry,
for all i such that 0 <= i < numOccupied */

public synchronized void insert(Object o)
throws InterruptedException
{
while (numOccupied == buffer.length)
// wait for space

wait();
buffer[(firstOccupied + numOccupied) % buffer.length] = o;
numOccupied++;
// in case any retrieves are waiting for data, wake them
notifyAll();
3

public synchronized Object retrieve()
throws InterruptedException
{
while(numOccupied == 0)
// wait for data
wait();
Object retrieved = buffer[firstOccupied];
buffer[firstOccupied] = null; // may help garbage collector
firstOccupied = (firstOccupied + 1) % buffer.length;
numOccupied——;
// in case any inserts are waiting for space, wake them
notifyAll();
return retrieved;

Figure 4.17: BoundedBuffer class using monitors and condition variables
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on the object’s condition variable. Both of these methods need to be called
by a thread that holds the object’s mutex. In my BoundedBuffer example,
I ensured this in a straightforward way by using wait and notifyAll inside
methods that are marked synchronized.

Having seen that wait and notifyAll need to be called with the mutex
held, you may spot a problem. If a waiting thread holds the mutex, there
will be no way for any other thread to acquire the mutex, and thus be able
to call notifyAll. Until you learn the rest of the story, it seems as though
any thread that invokes wait is doomed to eternal waiting.

The solution to this dilemma is as follows. When a thread invokes the
wait operation, it must hold the associated mutex. However, the wait op-
eration releases the mutex before putting the thread into its waiting state.
That way, the mutex is available to a potential waker. When the waiting
thread is awoken, it reacquires the mutex before the wait operation returns.
(In the case of recursive mutexes, as used in Java, the awakening thread
reacquires the mutex with the same lock count as before, so that it can still
do just as many unlock operations.)

The fact that a waiting thread temporarily releases the mutex helps
explain two features of the BoundedBuffer example. First, the waiting is
done at the very beginning of the methods. This ensures that the invariant
is still intact when the mutex is released. (More generally, the waiting could
happen later, as long as no state variables have been updated, or even as
long as they have been put back into an invariant-respecting state.) Second,
the waiting is done in a loop; only when the waited-for condition has been
verified to hold does the method move on to its real work. The loop is
essential because an awoken thread needs to reacquire the mutex, contending
with any other threads that are also trying to acquire the mutex. There is
no guarantee that the awoken thread will get the mutex first. As such, there
is no guarantee what state it will find; it may need to wait again.

When a waiting thread releases the mutex in order to wait on the con-
dition variable, these two actions are done indivisibly. There is no way
another thread can acquire the mutex before the first thread has started
waiting on the condition variable. This ensures no other thread will do a
notify operation until after the thread that wants to wait is actually waiting.

In addition to waiting for appropriate conditions at the top of each
method, I have invoked notifyAll at the end of each method. This po-
sition is less crucial, because the notifyAll method does not release the
mutex. The calling thread continues to hold the mutex until it reaches the
end of the synchronized method. Because an awoken thread needs to reac-
quire the mutex, it will not be able to make any headway until the notifying
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method finishes, regardless of where in that method the notification is done.

One early version of monitors with condition variables (as described
by Hoare) used a different approach. The notify operation immediately
transferred the mutex to the awoken thread, with no contention from other
waiting threads. The thread performing the notify operation then waited
until it received the mutex back from the awoken thread. Today, however,
the version I described previously seems to be dominant. In particular, it is
used not only in Java, but also in the POSIX API.

The BoundedBuffer code in Figure takes a very aggressive ap-
proach to notifying waiting threads: at the end of any operation all waiting
threads are woken using notifyAll. This is a very safe approach; if the
BoundedBuffer’s state was changed in a way of interest to any thread, that
thread will be sure to notice. Other threads that don’t care can simply go
back to waiting. However, the program’s efficiency may be improved some-
what by reducing the amount of notification done. Remember, though, that
correctness should always come first, with optimization later, if at all. Be-
fore optimizing, check whether the simple, correct version actually performs
inadequately.

There are two approaches to reducing notification. One is to put the
notifyAll inside an if statement, so that it is done only under some cir-
cumstances, rather than unconditionally. In particular, producers should be
waiting only if the buffer is full, and consumers should be waiting only if
the buffer is empty. Therefore, the only times when notification is needed
are when inserting into an empty buffer or retrieving from a full buffer. In
Programming Project you can modify the code to reflect this and test
that it still works.

The other approach to reducing notification is to use the notify method
in place of notifyAll. This way, only a single waiting thread is awoken,
rather than all waiting threads. Remember that optimization should be
considered only if the straightforward version performs inadequately. This
cautious attitude is appropriate because programmers find it rather tricky
to reason about whether notify will suffice. As such, this optimization is
quite error-prone. In order to verify that the change from notifyAll to
notify is correct, you need to check two things:

1. There is no danger of waking too few threads. Either you have some
way to know that only one is waiting, or you know that only one would
be able to proceed, with the others looping back to waiting.

2. There is no danger of waking the wrong thread. Either you have some
way to know that only one is waiting, or you know that all are equally
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able to proceed. If there is any thread which could proceed if it got the
mutex first, then all threads have that property. For example, if all the
waiting threads are executing the identical while loop, this condition
will be satisfied.

In Exercise you can show that these two conditions do not hold for
the BoundedBuffer example: replacing notifyAll by notify would not
be safe in this case. This is true even if the notification operation is done
unconditionally, rather than inside an if statement.

One limitation of Java is that each object has only a single condition
variable. In the BoundedBuffer example, any thread waits on that one con-
dition variable, whether it is waiting for space in the insert method or for
data in the retrieve method. In a system which allows multiple condition
variables to be associated with the same monitor (or mutex), you could use
two different condition variables. That would allow you to specifically notify
a thread waiting for space (or one waiting for data).

The POSIX API allows multiple condition variables per mutex. In Pro-
gramming Project [4.7]you can use this feature to rewrite the BoundedBuffer
example with two separate condition variables, one used to wait for space
and the other used to wait for data.

POSIX condition variables are initialized with pthread_cond_init in-
dependent of any particular mutex; the mutex is instead passed as an ar-
gument to pthread_cond_wait, along with the condition variable being
waited on. This is a somewhat error-prone arrangement, because all con-
current waiters need to pass in the same mutex. The operations corre-
sponding to notify and notifyAll are called pthread_cond_signal and
pthread_cond_broadcast. The API allows a thread to invoke pthread_
cond_signal or pthread_cond_broadcast without holding a corresponding
mutex, but using this flexibility without introducing a race bug is difficult.

The same technique I illustrated with BoundedBuffer can be applied
equally well for readers/writers locks or barriers; I leave these as Program-
ming Projects [4.8 and More importantly, the same technique will also
work for application-specific synchronization needs. For example, a video
player might have a state variable that indicates whether the player is cur-
rently paused. The playback thread checks that variable before displaying
each frame, and if paused, waits on a condition variable. The user-interface
thread sets the variable in response to the user pressing the pause button.
When the user interface puts the variable into the unpaused state, it does a
notify operation on the condition variable. You can develop an application
analogous to this in Programming Project [4.3]
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4.6 Semaphores

You have seen that monitors with condition variables are quite general and
can be used to synthesize other more special-purpose synchronization mech-
anisms, such as readers/writers locks. Another synchronization mechanism
with the same generality is the semaphore. For most purposes, semaphores
are less natural, resulting in more error-prone code. In those applications
where they are natural (for example, bounded buffers), they result in very
succinct, clear code. That is probably not the main reason for their con-
tinued use, however. Instead, they seem to be hanging on largely out of
historical inertia, having gotten a seven- to nine-year head start over moni-
tors. (Semaphores date to 1965, as opposed to the early 1970s for monitors.)

A semaphore is essentially an unsigned integer variable, that is, a variable
that can take on only nonnegative integer values. However, semaphores may
not be freely operated on with arbitrary arithmetic. Instead, only three
operations are allowed:

e At the time the semaphore is created, it may be initialized to any
nonnegative integer of the programmer’s choice.

e A semaphore may be increased by 1. The operation to do this is
generally called either release, up, or V. The letter V is short for
a Dutch word that made sense to Dijkstra, the 1965 originator of
semaphores. I will use release.

e A semaphore may be decreased by 1. The operation to do this is
frequently called either acquire, down, or P. Again, P is a Dutch ab-
breviation. I will use acquire. Because the semaphore’s value must
stay nonnegative, the thread performing an acquire operation waits
if the value is 0. Only once another thread has performed a release
operation to make the value positive does the waiting thread continue
with its acquire operation.

One common use for semaphores is as mutexes. If a semaphore is ini-
tialized to 1, it can serve as a mutex, with acquire as the locking operation
and release as the unlocking operation. Assuming that locking and un-
locking are properly paired, the semaphore will only ever have the values 0
and 1. When it is locked, the value will be 0, and any further attempt to
lock it (using acquire) will be forced to wait. When it is is unlocked, the
value will be 1, and locking can proceed. Note, however, that semaphores
used in this limited way have no advantage over mutexes. Moreover, if a



124 CHAPTER 4. SYNCHRONIZATION AND DEADLOCKS

program bug results in an attempt to unlock an already unlocked mutex,
a special-purpose mutex could signal the error, whereas a general-purpose
semaphore will simply increase to 2, likely causing nasty behavior later when
two threads are both allowed to execute acquire.

A better use for semaphores is for keeping track of the available quantity
of some resource, such as free spaces or data values in a bounded buffer.
Whenever a thread creates a unit of the resource, it increases the semaphore.
Whenever a thread wishes to consume a unit of the resource, it first does an
acquire operation on the semaphore. This both forces the thread to wait
until at least one unit of the resource is available and stakes the thread’s
claim to that unit.

Following this pattern, the BoundedBuffer class can be rewritten to use
semaphores, as shown in Figure This uses the a class of semaphores
imported from one of the packages of the Java API, java.util.concurrent.
In Programming Project you can instead write your own Semaphore
class using Java’s built-in mutexes and condition variables.

In order to show semaphores in the best possible light, I also moved away
from using an array to store the buffer. Instead, I used a List, provided
by the Java API. If, in Programming Project you try rewriting this
example to use an array (as in Figure , you will discover two blemishes.
First, you will need the numOccupied integer variable, as in Figure
This duplicates the information contained in occupiedSem, simply in a dif-
ferent form. Second, you will need to introduce explicit mutex synchro-
nization with synchronized statements around the code that updates the
nonsemaphore state variables. With those complications, semaphores lose
some of their charm. However, by using a List, I hid the extra complexity.

4.7 Deadlock

In Chapter [2] I introduced concurrency as a way to solve problems of re-
sponsiveness and throughput. Unfortunately, concurrency created its own
problem—races. Therefore, I introduced synchronization to solve the prob-
lem of races. The obvious question is, what new problems arise from syn-
chronization? One easy answer is that synchronization has reintroduced the
original responsiveness and throughput problems to some lesser degree, be-
cause synchronization reduces concurrency. However, as you will see in this
section, synchronization also creates an entirely new problem, and one that
is potentially more serious. Section 4.7.1| explains this problem, known as
deadlock, whereby threads can wind up permanently waiting. Sections[4.7.2]
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import java.util.concurrent.Semaphore;

public class BoundedBuffer {
private java.util.List<Object> buffer =
java.util.Collections.synchronizedList
(new java.util.LinkedList<Object>());

private static final int SIZE = 20; // arbitrary

private Semaphore occupiedSem = new Semaphore(0);
private Semaphore freeSem = new Semaphore(SIZE);

/* invariant: occupiedSem + freeSem = SIZE
buffer.size() = occupiedSem
buffer contains entries from oldest to youngest */

public void insert(Object o) throws InterruptedException{
freeSem.acquire();
buffer.add(o);
occupiedSem.release();

¥

public Object retrieve() throws InterruptedException{
occupiedSem.acquire();
Object retrieved = buffer.remove(0);
freeSem.release();
return retrieved;

Figure 4.18: Alternative BoundedBuffer class, using semaphores
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through explain three different solutions to the problem.

4.7.1 The Deadlock Problem

To illustrate what a deadlock is, and how one can arise, consider a highly
simplified system for keeping bank accounts. Suppose each account is an
object with two components: a mutex and a current balance. A procedure
for transferring money from one account to another might look as follows,
in pseudocode:

to transfer amount from sourceAccount to destinationAccount:
lock sourceAccount.mutex
lock destinationAccount.mutex
sourceAccount.balance = sourceAccount.balance - amount
destinationAccount.balance = destinationAccount.balance + amount
unlock sourceAccount.mutex
unlock destinationAccount.mutex

Suppose I am feeling generous and transfer $100 from myAccount to
yourAccount. Suppose you are feeling even more generous and transfer
$250 from yourAccount to myAccount. With any luck, at the end I should
be $150 richer and you should be $150 poorer. If either transfer request is
completed before the other starts, this is exactly what happens. However,
what if the two execute concurrently?

The mutexes prevent any race condition, so you can be sure that the
accounts are not left in an inconsistent state. Note that we have locked
both accounts for the entire duration of the transfer, rather than locking
each only long enough to update its balance. That way, an auditor can’t see
an alarming situation where money has disappeared from one account but
not yet appeared in the other account.

However, even though there is no race, not even with an auditor, all is
not well. Consider the following sequence of events:

1. T lock the source account of my transfer to you. That is, I lock
myAccount .mutex.

2. You lock the source account of your transfer to me. That is, you lock
yourAccount .mutex.

3. I try to lock the destination account of my transfer to you. That is, I
try to lock yourAccount .mutex. Because you already hold this mutex,
I am forced to wait.
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4. You try to lock the destination account of your transfer to me. That is,
you try to lock myAccount .mutex. Because I already hold this mutex,
you are forced to wait.

At this point, each of us is waiting for the other: we have deadlocked.

More generally, a deadlock exists whenever there is a cycle of threads,
each waiting for some resource held by the next. In the example, there
were two threads and the resources involved were two mutexes. Although
deadlocks can involve other resources as well (consider readers/writers locks,
for example), I will focus on mutexes for simplicity.

As an example of a deadlock involving more than two threads, consider
generalizing the preceding scenario of transferring money between bank ac-
counts. Suppose, for example, that there are five bank accounts, numbered
0 through 4. There are also five threads. Each thread is trying to transfer
money from one account to another, as shown in Figure[d.19] As before, each
transfer involves locking the source and destination accounts. Once again,
the threads can deadlock if each one locks the source account first, and then
tries to lock the destination account. This situation is much more famous
when dressed up as the dining philosophers problem, which I describe next.

In 1972, Dijkstra wrote about a group of five philosophers, each of whom
had a place at a round dining table, where they ate a particularly difficult
kind of spaghetti that required two forks. There were five forks at the
table, one between each pair of adjacent plates, as shown in Figure
Apparently Dijkstra was not concerned with communicable diseases such as
mononucleosis, because he thought it was OK for the philosophers seated to
the left and right of a particular fork to share it. Instead, he was concerned
with the possibility of deadlock. If all five philosophers start by picking up
their respective left-hand forks and then wait for their right-hand forks to
become available, they wind up deadlocked. In Exploration Project you

Thread | Source Account | Destination Account
0 0 1
1 1 2
2 2 3
3 3 4
4 4 0

Figure 4.19: Each of five threads tries to transfer money from a source
account to a destination account. If each thread locks its source account,
none will be able to proceed by locking its destination account.
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Dy0

Figure 4.20: Five philosophers, numbered 0 through 4, have places around
a circular dining table. There is a fork between each pair of adjacent places.
When each philosopher tries to pick up two forks, one at a time, deadlock
can result.

can try out a computer simulation of the dining philosophers. In that same
Exploration Project, you can also apply the deadlock prevention approach
described in Section to the dining philosophers problem.

Deadlocks are usually quite rare even if no special attempt is made to
prevent them, because most locks are not held very long. Thus, the window
of opportunity for deadlocking is quite narrow, and, like races, the timing
must be exactly wrong. For a very noncritical system, one might choose
to ignore the possibility of deadlocks. Even if the system needs the occa-
sional reboot due to deadlocking, other malfunctions will probably be more
common. Nonetheless, you should learn some options for dealing with dead-
locks, both because some systems are critical and because ignoring a known
problem is unprofessional. In Sections through I explain three
of the most practical ways to address the threat of deadlocks.

4.7.2 Deadlock Prevention Through Resource Ordering

The ideal way to cope with deadlocks is to prevent them from happen-
ing. One very practical technique for deadlock prevention can be illustrated
through the example of transferring money between two bank accounts.
Each of the two accounts is stored somewhere in the computer’s memory,
which can be specified through a numerical address. I will use the no-
tation min(accountl, account2) to mean whichever of the two account
objects occurs at the lower address (earlier in memory). Similarly, I will use
max (accountl, account2) to mean whichever occurs at the higher address.
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I can use this ordering on the accounts (or any other ordering, such as by
account number) to make a deadlock-free transfer procedure:

to transfer amount from sourceAccount to destinationAccount:
lock min(sourceAccount, destinationAccount) .mutex
lock max(sourceAccount, destinationAccount) .mutex
sourceAccount.balance = sourceAccount.balance - amount
destinationAccount.balance = destinationAccount.balance + amount
unlock sourceAccount.mutex
unlock destinationAccount.mutex

Now if I try transferring money to you, and you try transferring money
to me, we will both lock the two accounts’ mutexes in the same order. No
deadlock is possible; one transfer will run to completion, and then the other.

The same technique can be used whenever all the mutexes (or other re-
sources) to be acquired are known in advance. Each thread should acquire
the resources it needs in an agreed-upon order, such as by increasing mem-
ory address. No matter how many threads and resources are involved, no
deadlock can occur.

As one further example of this technique, you can look at some code
from the Linux kernel. Recall from Chapter [3] that the scheduler keeps
the run queue, which holds runnable threads, in a data structure. In the
kernel source code, this structure is known as an rq. Each processor in a
multiprocessor system has its own rq. When the scheduler moves a thread
from one processor’s rq to another’s, it needs to lock both rgs. Figure [4.21]
shows the code to do this. Note that this procedure uses the deadlock
prevention technique with one refinement: it also tests for the special case
that the two runqueues are in fact one and the same.

Deadlock prevention is not always possible. In particular, the ordering
technique I showed cannot be used if the mutexes that need locking only
become apparent one by one as the computation proceeds, such as when
following a linked list or other pointer-based data structure. Thus, you need
to consider coping with deadlocks, rather than only preventing them.

4.7.3 Ex Post Facto Deadlock Detection

In order to diagnose deadlocks, you need some information about who is
waiting for whom. Suppose that each mutex records not just whether it is
locked or unlocked, but also which thread it is held by, if any. (This infor-
mation may be useful for unrelated purposes as well, such as implementing
recursive or error-checking mutexes.) Additionally, when a thread is unable
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static void double_rq_lock(struct rq *rql, struct rq *rq2)
__acquires(rqi->lock)
__acquires(rq2->lock)
{
BUG_ON(!irgs_disabled());
if (rql == rq2) {
raw_spin_lock(&rql->lock) ;
__acquire(rg2->lock); /* Fake it out ;) */
} else {
if (rql < rq2) {
raw_spin_lock(&rql->lock) ;
raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
} else {
raw_spin_lock(&rg2->lock);
raw_spin_lock_nested(&rql->lock, SINGLE_DEPTH_NESTING) ;

Figure 4.21: The Linux scheduler uses deadlock prevention when locking
two run queues.
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to immediately acquire a mutex and is put into a waiting state, you can
record which mutex it is waiting for. With this information, you can con-
struct a resource allocation graph. Figure shows an example graph for
Section [£.7.1]s sample deadlock between bank account transfers. Squares
are threads and circles are mutexes. The arrows show which mutex each
thread is waiting to acquire and which thread each mutex is currently held
by. Because the graph has a cycle, it shows that the system is deadlocked.

A system can test for deadlocks periodically or when a thread has waited
an unreasonably long time for a lock. In order to test for a deadlock, the
system uses a standard graph algorithm to check whether the resource al-
location graph contains a cycle. With the sort of mutexes described in this
book, each mutex can be held by at most one thread and each thread is
waiting for at most one mutex, so no vertex in the graph has an out-degree
greater than 1. This allows a somewhat simpler graph search than in a
fully-general directed graph.

Once a deadlock is detected, a painful action is needed in order to recover:
one of the deadlocked threads must be forcibly terminated, or at least rolled
back to an earlier state, so as to free up the mutexes it holds. In a general
computing environment, where threads have no clean way to be rolled back,
this is bit akin to freeing yourself from a bear trap by cutting off your leg.
For this reason, ex post facto deadlock detection is not common in general-
purpose operating systems.

One environment in which ex post facto deadlock detection and recovery
works cleanly is database systems, with their support for atomic transac-
tions. I will explain atomic transactions in Chapter [B} for now, you need only
understand that a transaction can cleanly be rolled back, such that all the

My transfer to you
myAccount.mutex \ / yourAccount.mutex

Your transfer to me

Figure 4.22: The cycle in this resource allocation graph indicates a deadlock.
Each square represents a thread and each circle a mutex. An arrow from
a square to a circle shows a thread waiting for a mutex, whereas an arrow
from a circle to a square shows a mutex being held by a thread.
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updates it made to the database are undone. Because this infrastructure is
available, database systems commonly include deadlock detection. When a
deadlock is detected, one of the transactions fails and can be rolled back, un-
doing all its effects and releasing all its locks. This breaks the deadlock and
allows the remaining transactions to complete. The rolled-back transaction
can then be restarted.

Figure shows an example scenario of deadlock detection taken from
the Oracle database system. This transcript shows the time interleaving of
two different sessions connected to the same database. One session is shown
at the left margin, while the other session is shown indented four spaces.
Command lines start with the system’s prompt, SQL>, and then contain a
command typed by the user. Each command line is broken on to a second
line, to fit the width of this book’s pages. Explanatory comments start with
--. All other lines are output. In Chapter [5] I will show the recovery from
this particular deadlock as part of my explanation of transactions.

4.7.4 Immediate Deadlock Detection

The two approaches to deadlocks presented thus far are aimed at the times
before and after the moment when deadlock occurs. One arranges that the
prerequisite circumstances leading to deadlock do not occur, while the other
notices that deadlock already has occurred, so that the mess can be cleaned
up. Now I will turn to a third alternative: intervening at the very moment
when the system would otherwise deadlock. Because this intervention re-
quires techniques similar to those discussed in Section[4.7.3] this technique is
conventionally known as a form of deadlock detection rather than deadlock
prevention, even though from a literal perspective the deadlock is prevented
from happening.

As long as no deadlock is ever allowed to occur, the resource allocation
graph will remain acyclic, that is, free of cycles. Each time a thread tries to
lock a mutex, the system can act as follows:

e If the mutex is unlocked, lock it and add an edge from the mutex to
the thread, so as to indicate which thread now holds the lock.

e If the mutex is locked, follow the chain of edges from it until that chain
dead ends. (It must, because the graph is acyclic.) Is the end of the
chain the same as the thread trying to lock the mutex?

— If not, add an edge showing that the thread is waiting for the
mutex, and put the thread into a waiting state.
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SQL> update accounts set balance = balance - 100
where account_number = 1;

1 row updated.

SQL> update accounts set balance = balance - 250
where account_number = 2;

1 row updated.

SQL> update accounts set balance = balance + 100
where account_number = 2;
—-- note no response, for now this SQL session is hanging

SQL> update accounts set balance = balance + 250

where account_number = 1;
-- this session hangs, but in the other SQL session we get
-— the following error message:

update accounts set balance = balance + 100
where account_number = 2
*
ERROR at line 1:
ORA-00060: deadlock detected while waiting for resource

Figure 4.23: The Oracle database system detects a deadlock between two
sessions connected to the same database. One session, shown at the left
margin, is transferring $100 from account 1 to account 2. The other session,
shown indented, is transferring $250 from account 2 to account 1. Each
update statement locks the account being updated. Therefore, each session
hangs when it tries locking the account that the other session has previously
locked.
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— If the end of the chain is the same thread, adding the extra edge
would complete a cycle, as shown in Figure[4.24] Therefore, don’t
add the edge, and don’t put the thread into a waiting state. In-
stead, return an error code from the lock request (or throw an
exception), indicating that the mutex could not be locked because
a deadlock would have resulted.

Notice that the graph search here is somewhat simpler than in ex post
facto deadlock detection, because the graph is kept acyclic. Nonetheless, the
basic idea is the same as deadlock detection, just done proactively rather
than after the fact. As with any deadlock detection, some form of roll-
back is needed; the application program that tried to lock the mutex must
respond to the news that its request could not be granted. The application
program must not simply try again to acquire the same mutex, because it
will repeatedly get the same error code. Instead, the program must release
the locks it currently holds and then restart from the beginning. The chance
of needing to repeat this response can be reduced by sleeping briefly after
releasing the locks and before restarting.

Designing an application program to correctly handle immediate dead-
lock detection can be challenging. The difficulty is that before the program
releases its existing locks, it should restore the objects those locks were
protecting to a consistent state. One case in which immediate deadlock de-
tection can be used reasonably easily is in a program that acquires all its
locks before it modifies any objects.

One example of immediate deadlock detection is in Linux and Mac OS X,
for the readers/writers locks placed on files using fentl. If a lock request
would complete a cycle, the fcntl procedure returns the error code EDEADLK.
However, this deadlock detection is not a mandatory part of the POSIX
specification for fcntl.

4.8 The Interaction of Synchronization with Schedul-
ing

Recall that the scheduler controls which runnable thread runs on each pro-
cessor, and synchronization actions performed by the running thread control
which threads are runnable. Therefore, synchronization and scheduling in-
teract with one another. Two forms of interaction, known as priority inver-
sion and the convoy phenomenon, are particularly interesting. Said another
way, they can cause lots of grief. Each can subvert the prioritization of
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My transfer to you

myAccount.mutex yourAccount.mutex

~
~
~
~
~
~

Your transfer to me

Figure 4.24: In this resource graph, the solid arrows indicate that my transfer
holds myAccount .mutex, your transfer holds yourAccount.mutex, and my
transfer is waiting for yourAccount.mutex. The dashed arrow indicates a
request currently being made by your transfer to lock myAccount.mutex.
If this dashed arrow is added, a cycle is completed, indicating a deadlock.
Therefore, the request will fail rather than enter a state of waiting.

threads, and the convoy phenomenon can also greatly increase the context
switching rate and hence decrease system throughput. For simplicity, each
is presented here under the assumption of a single-processor system.

4.8.1 Priority Inversion

When a priority-based scheduler is used, a high-priority thread should not
have to wait while a low-priority thread runs. If threads of different prior-
ity levels share mutexes or other blocking synchronization primitives, some
minor violations of priority ordering are inevitable. For example, consider
the following sequence of events involving two threads (high-priority and
low-priority) that share a single mutex:

1. The high-priority thread goes into the waiting state, waiting for an
I/0 request to complete.

2. The low-priority thread runs and acquires the mutex.

3. The I/0 request completes, making the high-priority thread runnable
again. It preempts the low-priority thread and starts running.

4. The high-priority thread tries to acquire the mutex. Because the mu-
tex is locked, the high-priority thread is forced to wait.

5. The low-priority thread resumes running.

At this point, a high-priority thread is waiting while a low-priority thread
runs. However, this temporary violation of priority ordering is not a big
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deal, because programmers generally ensure that no thread holds a mutex
for very long. As such, the low-priority thread will soon release the mutex
and allow the high-priority thread to run.

However, another, more insidious problem can lead to longer-term vio-
lation of priority order (that is, priority inversion). Suppose there are three
threads, of low, medium, and high priority. Consider this sequence of events:

1. The high- and medium-priority threads both go into the waiting state,
each waiting for an I/O request to complete.

2. The low-priority thread runs and acquires the mutex.

3. The two I/O requests complete, making the high- and medium-priority
threads runnable. The high-priority thread preempts the low-priority
thread and starts running.

4. The high-priority thread tries to acquire the mutex. Because the mu-
tex is locked, the high-priority thread is forced to wait.

5. At this point, the medium-priority thread has the highest priority of
those that are runnable. Therefore it runs.

In this situation, the medium-priority thread is running and indirectly
keeping the high-priority thread from running. (The medium-priority thread
is blocking the low-priority thread by virtue of their relative priorities. The
low-priority thread is blocking the high-priority thread by holding the mu-
tex.) The medium-priority thread could run a long time. In fact, a whole
succession of medium-priority threads with overlapping lifetimes could come
and go, and the high-priority thread would wait the whole time despite its
higher priority. Thus, the priority inversion could continue for an arbitrarily
long time.

One “solution” to the priority inversion problem is to avoid fixed-priority
scheduling. Over time, a decay usage scheduler will naturally lower the prior-
ity of the medium-priority thread that is running. Eventually it will drop be-
low the low-priority thread, which will then run and free the mutex, allowing
the high-priority thread to run. However, a succession of medium-priority
threads, none of which runs for very long, could still hold up the high-priority
thread arbitrarily long. Therefore, Microsoft Windows responds to priority
inversion by periodically boosting the priority of waiting low-priority pro-
cesses.

This first “solution” has two shortcomings. First, it may be sluggish in
responding to a priority inversion. Second, fixed-priority scheduling is desir-
able in some applications, such as real-time systems. Therefore, a genuine
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solution to the priority inversion problem is needed—one that makes the
problem go away, rather than just limiting the duration of its effect. The
genuine solution is priority inheritance.

Priority inheritance is a simple idea: any thread that is waiting for a
mutex temporarily “lends” its priority to the thread that holds the mutex.
A thread that holds mutexes runs with the highest priority among its own
priority and those priorities it has been lent by threads waiting for the
mutexes. In the example with three threads, priority inheritance will allow
the low-priority thread that holds the mutex to run as though it were high-
priority until it unlocks the mutex. Thus, the truly high-priority thread will
get to run as soon as possible, and the medium-priority thread will have to
wait.

Notice that the high-priority thread has a very selfish motive for let-
ting the low-priority thread use its priority: it wants to get the low-priority
thread out of its way. The same principle can be applied with other forms of
scheduling than priority scheduling. By analogy with priority inheritance,
one can have deadline inheritance (for Earliest Deadline First scheduling) or
even a lending of processor allocation shares (for proportional-share schedul-

ing).

4.8.2 The Convoy Phenomenon

I have remarked repeatedly that well-designed programs do not normally
hold any mutex for very long; thus, attempts to lock a mutex do not nor-
mally encounter contention. This is important because locking a mutex with
contention is much more expensive. In particular, the big cost of a request
to lock an already-locked mutex is context switching, with the attendant
loss of cache performance. Unfortunately, one particularly nasty interaction
between scheduling and synchronization, known as the convoy phenomenon,
can sometimes cause a heavily used mutex to be perpetually contended,
causing a large performance loss. Moreover, the convoy phenomenon can
subvert scheduling policies, such as the assignment of priorities. In this sub-
section, I will explain the convoy phenomenon and examine some solutions.

Suppose a system has some very central data structure, protected by a
mutex, which each thread operates on fairly frequently. Each time a thread
operates on the structure, the thread locks the mutex before and unlocks
it after. Each operation is kept as short as possible. Because they are
frequent, however, the mutex spends some appreciable fraction of the time
locked, perhaps 5 percent.

The scheduler may at any point preempt a thread. For example, the
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thread may have consumed its allocated time slice. In the example situa-
tion where the mutex is locked 5 percent of the time, it would not be very
surprising if after a while, a thread were preempted while it held the mutex.
When this happens, the programmer who wrote that thread loses all control
over how long it holds the mutex locked. Even if the thread was going to
unlock the mutex in its very next instruction, it may not get the opportunity
to execute that next instruction for some time to come. If the processor is
dividing its time among N runnable threads of the same priority level, the
thread holding the mutex will presumably not run again for at least N times
the context-switching time, even if the other threads all immediately block.

In this situation, a popular mutex is held for a long time. Meanwhile,
other threads are running. Because the mutex is a popular one, the chances
are good those other threads will try to acquire it. Because the mutex is
locked, all the threads that try to acquire the mutex will be queued on its
wait queue. This queue of threads is the convoy, named by analogy with
the unintentional convoy of vehicles that develops behind one slow vehicle
on a road with no passing lane. As you will see, this convoy spells trouble.

Eventually the scheduler will give a new time slice to the thread that
holds the mutex. Because of that thread’s design, it will quickly unlock the
mutex. When that happens, ownership of the mutex is passed to the first
thread in the wait queue, and that thread is made runnable. The thread
that unlocked the mutex continues to run, however. Because it was just
recently given a new time slice, one might expect it to run a long time.
However, it probably won’t, because before too terribly long, it will try to
reacquire the popular mutex and find it locked. (“Darn,” it might say, “I
shouldn’t have given that mutex away to the first of the waiters. Here I am
needing it again myself.”) Thus, the thread takes its place at the back of
the convoy, queued up for the mutex.

At this point, the new holder of the mutex gets to run, but it too gives
away the mutex, and hence is unlikely to run a full time slice before it has
to queue back up. This continues, with each thread in turn moving from
the front of the mutex queue through a brief period of execution and back
to the rear of the queue. There may be slight changes in the makeup of the
convoy—a thread may stop waiting on the popular mutex, or a new thread
may join—but seen in the aggregate, the convoy can persist for a very long
time.

This situation causes two problems. First, the context switching rate
goes way up; instead of one context switch per time slice, there is now one
context switch per attempt to acquire the popular mutex. The overhead of
all those context switches will drive down the system throughput. Second,
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the scheduler’s policy for choosing which thread to run is subverted. For ex-
ample, in a priority scheduler, the priorities will not govern how the threads
run. The reason for this is simple: the scheduler can choose only among the
runnable threads, but with the convoy phenomenon, there will only be one
runnable thread; all the others will be queued up for the mutex.

When I described mutexes, I said that each mutex contains a wait
queue—a list of waiting threads. I implied that this list is maintained in
a first-in first-out (FIFO) basis, that is, as a true queue. If so, then the
convoy threads will essentially be scheduled in a FIFO round-robin, inde-
pendent of the scheduler policy (for example, priorities), because the threads
are dispatched from the mutex queue rather than the scheduler’s run queue.

This loss of prioritization can be avoided by handling the mutex’s wait
queue in priority order the same way as the run queue, rather than FIFO.
When a mutex is unlocked with several threads waiting, ownership of the
mutex could be passed not to the thread that waited the longest, but rather
to the one with the highest priority.

Changing which one thread is moved from the mutex’s waiters list to
become runnable does not solve the throughput problem, however. The
running thread is still going to have the experience I anthropomorphized
as “Darn, I shouldn’t have given that mutex away.” The context switching
rate will still be one switch per lock acquisition. The convoy may reorder
itself, but it will not dissipate.

Therefore, stronger medicine is needed for popular mutexes. Instead of
the mutexes I showed in Figures and on page you can use the
version shown in Figure 4.25

When a popular mutex is unlocked, all waiting threads are made runnable
and moved from the waiters list to the runnable threads list. However, own-
ership of the mutex is not transferred to any of them. Instead, the mutex
is left in the unlocked state, with mutex.state equal to 1. That way, the
running thread will not have to say “Darn.” It can simply relock the mutex;
over the course of its time slice, it may lock and unlock the mutex repeatedly,
all without context switching.

Because the mutex is only held 5 percent of the time, the mutex will
probably not be held when the thread eventually blocks for some other
reason (such as a time slice expiration). At that point, the scheduler will
select one of the woken threads to run. Note that this will naturally follow
the normal scheduling policy, such as priority order.

The woken thread selected to run next did not have the mutex owner-
ship directly transferred to it. Therefore, it will need to loop back to the
beginning of the mutex acquisition code, as will each thread in turn when
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to lock mutex:
repeat
lock mutex.spinlock (in cache-conscious fashion)
if mutex.state = 1 then
let mutex.state = 0
unlock mutex.spinlock
let succesful = true
else
add current thread to mutex.waiters
remove current thread from runnable threads
unlock mutex.spinlock
yield to a runnable thread
let successful = false
until successful

to unlock mutex:
lock mutex.spinlock (in cache-conscious fashion)
let mutex.state =1
move all threads from mutex.waiters to runnable
unlock mutex.spinlock

Figure 4.25: To protect against convoys, the unlock operation sets the mu-
tex’s state to unlocked and makes all waiting threads runnable. Each awoken
thread loops back to trying to lock the mutex. This contrasts with the prior
version of mutexes, in which one thread was awoken with the mutex left in
its locked state.
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it is scheduled. However, most of the time the threads will find the mutex
unlocked, so this won’t be expensive. Also, because each thread will be
able to run for a normal period without context-switching overhead per lock
request, the convoy will dissipate.

The POSIX standard API for mutexes requires that one or the other
of the two prioritization-preserving approaches be taken. At a minimum, if
ownership of a mutex is directly transferred to a waiting thread, that waiting
thread must be selected based on the normal scheduling policy rather than
FIFO. Alternatively, a POSIX-compliant mutex implementation can simply
dump all the waiting threads back into the scheduler and let it sort them

out, as in Figure .25

4.9 Nonblocking Synchronization

In order to introduce nonblocking synchronization with a concrete example,
let’s return to the TicketVendor class shown in Figure [4.6|on page In
that example, whenever a thread is selling a ticket, it temporarily blocks
any other thread from accessing the same TicketVendor. That ensures
that the seatsRemaining and cashOnHand are kept consistent with each
other, as well as preventing two threads from both selling the last available
ticket. The downside is that if the scheduler ever preempts a thread while it
holds the TicketVendor’s lock, all other threads that want to use the same
TicketVendor remain blocked until the first thread runs again, which might
be arbitrarily far in the future. Meanwhile, no progress is made on vending
tickets or even on conducting an audit. This kind of blocking underlies
both priority inversion and the convoy phenomenon and if extended through
a cyclic chain of objects can even lead to deadlock. Even absent those
problems, it hurts performance. What’s needed is a lock-free TicketVendor
that manages to avoid race bugs without this kind of unbounded blocking.

Recall that the spinlocks introduced in Section [4.3.3] use atomic exchange
instructions. A thread that succeeds in changing a lock from the unlocked
state to the locked state is guaranteed that no other thread did the same.
The successful thread is thereby granted permission to make progress, for
example by vending a ticket. However, actually making progress and then
releasing the lock are separate actions, not part of the atomic exchange. As
such, they might be delayed. A nonblocking version of the TicketVendor
requires a more powerful atomic instruction that can package the actual
updating of the TicketVendor with the obtaining of permission.

The compare-and-set instruction meets this need by doing the following
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two things atomically:

1. The instruction determines whether a variable contains a specified
value and reports the answer.

2. The instruction sets the variable to a new value, but only if the answer
to the preceding question was “yes.”

Some variant of this instruction is provided by all contemporary processors.
Above the hardware level, it is also part of the Java API through the classes
included in the java.util.concurrent.atomic package. Figures and
[4:27) show a nonblocking version of the TicketVendor class that uses one of
these classes, AtomicReference.

In this example, the sellTicket method attempts to make progress
using the following method invocation:

state.compareAndSet (snapshot, next)

If the state still matches the earlier snapshot, then no other concurrent
thread has snuck in and sold a ticket. In this case, the state is atomically
updated and the method returns true, at which point a ticket can safely
be dispensed. On the other hand, if the method returns false, then the
enclosing while loop will retry the whole process, starting with getting a
new snapshot of the state. You can explore this behavior in Programming
Project [£.17}

The lock-free synchronization illustrated by this example ensures that
no thread will ever be blocked waiting for a lock held by some other thread.
In particular, no matter how long the scheduler chooses to delay execution
of any thread, other threads can continue making progress. However, there
is still one way a thread might end up running arbitrarily long without
making progress, which is if over and over again, other threads slip in and
update the state. In a case like that, the system as a whole continues to
make progress—tickets continue being sold—but one particular thread keeps
retrying. Stronger forms of nonblocking synchronization, known as “wait-
free synchronization,” guarantee that each individual thread makes progress.
However, wait-free synchronization is considerably more complex than the
style of lock-free synchronization shown here and hence is rarely used in
practice.

Similar techniques can be used to create lock-free data structures that
allow multiple threads to carry out operations concurrently, to the maxi-
mum extent possible. For example, if a queue is going to deliver data in
a well-defined order, dequeue operations need to be processed sequentially,
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import java.util.concurrent.atomic.AtomicReference;
public class LockFreeTicketVendor {

private static class State {
private int seatsRemaining, cashOnHand;

public State(int seatsRemaining, int cashOnHand) {
this.seatsRemaining = seatsRemaining;
this.cashOnHand = cashOnHand;

}

public int getSeatsRemaining(){return seatsRemaining;}
public int getCashOnHand(){return cashOnHand;}

private AtomicReference<State> state;
private int startingSeats, startingCash;

public LockFreeTicketVendor(int startingSeats,
int startingCash) {
this.startingSeats = startingSeats;
this.startingCash = startingCash;
this.state = new AtomicReference<State>
(new State(startingSeats, startingCash));

// See next figure for sellTicket and audit methods.

// Other details also remain to be filled in.

Figure 4.26: This lock-free ticket vendor uses nonblocking synchroniza-
tion. Notice that rather than directly storing the seatsRemaining and
cashOnHand, it stores an AtomicReference to a State object that packages
these two variables together, allowing them to be kept consistent without
locking. The next figure shows how this AtomicReference is used.
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public void sellTicket(){
while(true){
State snapshot = state.get();
int seatsRemaining = snapshot.getSeatsRemaining();
int cashOnHand = snapshot.getCashOnHand() ;
if (seatsRemaining > 0){
State next = new State(seatsRemaining - 1,
cashOnHand + PRICE);
if (state.compareAndSet (snapshot, next)){
dispenseTicket();
return;
}
} else {
displaySorrySoldOut () ;
return;
}
}
}

public void audit() {
State snapshot = state.get();
int seatsRemaining = snapshot.getSeatsRemaining();
int cashOnHand = snapshot.getCashOnHand() ;
// check seatsRemaining, cashOnHand

Figure 4.27: These methods from the previous figure’s lock-free ticket vendor
show how the AtomicReference supports nonblocking synchronization. A
consistent snapshot can be taken of the current state, and the state is only
set to an updated version (and a ticket dispensed) if the snapshot remains
valid.
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but there is no reason additional data can’t be enqueued onto an already
non-empty queue at the same time as earlier data is dequeued. Such data
structures aren’t easy to design and program; achieving high performance
and concurrency without introducing bugs is quite challenging. However,
concurrent data structures can be programmed once by experts and then
used as building blocks. Concurrent queues in particular can be used in
frameworks that queue up tasks to be processed by a pool of threads; one
example is Apple’s Grand Central Dispatch framework.

4.10 Security and Synchronization

A system can be insecure for two reasons: either because its security poli-
cies are not well designed, or because some bug in the code enforcing those
policies allows the enforcement to be bypassed. For example, you saw in
Chapter [3| that a denial of service attack can be mounted by setting some
other user’s thread to a very low priority. I remarked that as a result, op-
erating systems only allow a thread’s priority to be changed by its owner.
Had this issue been overlooked, the system would be insecure due to an
inadequate policy. However, the system may still be insecure if clever pro-
grammers can find a way to bypass this restriction using some low-level bug
in the operating system code.

Many security-critical bugs involve synchronization, or more accurately,
the lack of synchronization—the bugs are generally race conditions resulting
from inadequate synchronization. Four factors make race conditions worth
investigation by someone exploiting a system’s weaknesses (a cracker):

e Any programmer of a complicated concurrent system is likely to in-
troduce race bugs, because concurrency and synchronization are hard
to reason about.

e Normal testing of the system is unlikely to have eliminated these bugs,
because the system will still work correctly the vast majority of the
time.

e Although the race might almost never occur in normal operation, the
cracker may be able to trigger the race by understanding it and care-
fully staging the necessary sequence of events. Even if the odds can’t
be improved beyond one in ten thousand (for example), the cracker
can easily program a computer to loop through the attempt tens of
thousands of times until the lucky timing happens.
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e Races allow seemingly impossible situations, defeating the system de-
signer’s careful security reasoning.

As a hypothetical example, assume that an operating system had a fea-
ture for changing a thread’s priority when given a pointer to a block of mem-
ory containing two values: an identifier for the thread to be changed and
the new priority. Let’s call these request.thread and request.priority.
Suppose that the code looked like this:

if request.thread is owned by the current user then
set request.thread’s priority to request.priority
else
return error code for invalid request

Can you see the race? A cracker could start out with request.thread being
a worthless thread he or she owns and then modify request.thread to be
the victim thread after the ownership check but before the priority is set. If
the timing doesn’t work out, no great harm is done, and the cracker can try
again.

This particular example is not entirely realistic in a number of regards,
but it does illustrate a particular class of races often contributing to se-
curity vulnerabilities: so-called TOCTTOU races, an acronym for Time
Of Check To Time Of Use. An operating system designer would normally
guard against this particular TOCTTOU bug by copying the whole request
structure into protected memory before doing any checking. However, other
TOCTTOU bugs arise with some regularity. Often, they are not in the
operating system kernel itself, but rather in a privileged program.

For example, suppose an email delivery program is granted the privilege
of writing into any file, independent of file ownership or normal protections,
so that it can deliver each user’s mail into that user’s mail file. Before
delivering mail into a mail file, it will check that the mail file is a normal file
that is really in the expected location, not an indirect reference (symbolic
link) to a file located elsewhere. (I will explain symbolic links in Chapter
when I cover file systems. The details are not important here.) That way,
you cannot trick the mail delivery program into writing into some sensitive
file. Or can you? Perhaps by changing from a genuine mail file to a symbolic
link at just the right moment, you can exploit a TOCTTOU vulnerability.
Sun Microsystems had this particular problem with their mail software in
the early 1990s.
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Exercises

4.1 As an example of a race condition, I showed how two threads could
each dispense the last remaining ticket by each checking seatsRemaining
before either decrements it. Show a different sequence of events for
that same code, whereby starting with seatsRemaining being 2, two
threads each dispense a ticket, but seatsRemaining is left as 1 rather
than 0.

4.2 In the mutex-locking pseudocode of Figure on page there
are two consecutive steps that remove the current thread from the
runnable threads and then unlock the spinlock. Because spinlocks
should be held as briefly as possible, we ought to consider whether
these steps could be reversed, as shown in Figure 4.28] Explain why
reversing them would be a bad idea by giving an example sequence of
events where the reversed version malfunctions.

4.3 Show how to change queuing mutexes to correspond with POSIX’s
mutex-type PTHREAD MUTEX RECURSIVE. You may add additional com-
ponents to each mutex beyond the state, waiters, and spinlock.

4.4 Explain why replacing notifyAll by notify is not safe in the Bounded
Buffer class of Figure [4.17] on page Give a concrete sequence of
events under which the modified version would misbehave.

4.5 A semaphore can be used as a mutex. Does it correspond with the kind
POSIX calls PTHREAD _MUTEX_ERROR_CHECK, PTHREAD MUTEX_NORMAL, or
PTHREAD_MUTEX_RECURSIVE? Justify your answer.

4.6 State licensing rules require a child-care center to have no more than
three infants present for each adult. You could enforce this rule using
a semaphore to track the remaining capacity, that is, the number of
additional infants that may be accepted. Each time an infant is about
to enter, an acquire operation is done first, with a release when
the infant leaves. Each time an adult enters, you do three release
operations, with three acquire operations before the adult may leave.

(a) Although this system will enforce the state rules, it can create
a problem when two adults try to leave. Explain what can go
wrong, with a concrete scenario illustrating the problem.

(b) The difficulty you identified in the preceding subproblem can be
remedied by using a mutex as well as the semaphore. Show how.
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to lock mutex:

lock mutex.spinlock (in cache-conscious fashion)
if mutex.state = 1 then

let mutex.state = 0
unlock mutex.spinlock

else

add current thread to mutex.waiters

unlock mutex.spinlock

remove current thread from runnable threads
yield to a runnable thread

Figure 4.28: This is a buggy version of Figure |4.10, Exercise 4.2] asks you
to explain what is wrong with it.

4.7

4.8

(c) Alternatively, you could abandon semaphores entirely and use a
monitor with one or more condition variables. Show how.

I'illustrated deadlock detection using a transcript taken from an Oracle
database (Figure page . From that transcript you can tell
that the locks are at the granularity of one per row, rather than one
per table.

(a) What is the evidence for this assertion?

(b) Suppose the locking were done per table instead. Explain why
no deadlock would have ensued.

(c) Even if locking were done per table, deadlock could still happen
other under circumstances. Give an example.

Suppose you have two kinds of objects: threads and mutexes. Each
locked mutex contains a reference to the thread that holds it named
mutex.owner; if the mutex is unlocked, mutex.owner is null. Sim-
ilarly, each thread that is blocked waiting for a mutex contains a
reference to the mutex it is waiting for as thread.blocker; if the
thread is not waiting for any mutex, thread.blocker is null. Sup-
pose threads also contain a field, thread.mark, which is available for
your use and is initialized to 0. Further, suppose you have an array
of all the threads in the system as threads[0], threads[1], and so
forth, up to threads[threads.length-1]. Write a pseudocode algo-
rithm to test whether the system contains a deadlock.
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The main topic of this chapter (synchronization) is so closely related
to the topics of Chapters [2| and [3[ (threads and scheduling) that an
author can hardly describe one without also describing the other two.
For each of the following pairs of topics, give a brief explanation of
why understanding the first topic in the pair is useful for gaining a full
understanding of the second:

(a
(b

) threads, scheduling

)
(¢) scheduling, synchronization
(d)

)

)

threads, synchronization

d
(e
(f

scheduling, threads

synchronization, scheduling

synchronization, threads

Suppose a computer with only one processor runs a program that
immediately creates three threads, which are assigned high, medium,
and low fixed priorities. (Assume that no other threads are competing

for the same processor.) The threads share access to a single mutex.
Pseudocode for each of the threads is shown in Figure [£.29]

(a) Suppose that the mutex does not provide priority inheritance.
How soon would you expect the program to terminate? Why?

(b) Suppose that the mutex provides priority inheritance. How soon
would you expect the program to terminate? Why?

Programming Project gives you the opportunity to experimentally
confirm your answers.

Suppose the first three lines of the audit method in Figure [4.27] on
page were replaced by the following two lines:

int seatsRemaining = state.get().getSeatsRemaining();
int cashOnHand = state.get().getCashOnHand() ;

Explain why this would be a bug.

Programming Projects

4.1

Flesh out the TicketVendor class from Figure on page [105] us-
ing Figure on page for guidance. Add a simple test program
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High-priority thread:
sleep 1 second
lock the mutex
terminate execution of the whole program

Medium-priority thread:
sleep 1 second
run for 10 seconds

Low-priority thread:
lock the mutex
sleep for 2 seconds
unlock the mutex

Figure 4.29: These are the three threads referenced by Exercise

4.2

4.3

that uses a TicketVendor from multiple threads. Temporarily remove
the synchronized keywords and demonstrate race conditions by in-
serting calls to the Thread.sleep method at appropriate points, so
that incredibly lucky timing is not necessary. You should set up one
demonstration for each race previously considered: two threads selling
the last seat, two threads selling seats but the count only going down
by 1, and an audit midtransaction. Now reinsert the synchronized
keyword and show that the race bugs have been resolved, even with
the sleeps in place.

Demonstrate races and mutual exclusion as in the previous project, but
using a C program with POSIX threads and mutexes. Alternatively,
use some other programming language of your choice, with its support
for concurrency and mutual exclusion.

Choose some simplified version of a real-world process that evolves
over time, such as a bouncing ball, an investment with compound in-
terest, or populations of predator and prey. Write a program with two
threads. Ome thread should simulate the process you chose as time
passes, possibly with some suitable scaling such as 1 second of simula-
tor time per year of simulated time. The other thread should provide
a user interface through which the user can modify the parameters
of the ongoing simulation and can also pause and resume the simu-
lation. Be sure to properly synchronize the two threads. Java would
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be an appropriate language for this project, but you could also use
some other language with support for concurrency, synchronization,
and user interfaces.

This project is identical to the previous one, except that instead of
building a simulator for a real-world process, you should build a game
of the kind where action continues whether or not the user makes a
move.

Write a test program in Java for the BoundedBuffer class of Fig-

ure [A.17] on page [TI9]

Modify the BoundedBuffer class of Figure m (page [119)) to call
notifyAll only when inserting into an empty buffer or retrieving from
a full buffer. Test that it still works.

Rewrite the BoundedBuffer class of Figure m (page [119) in C or
C++ using the POSIX API. Use two condition variables, one for avail-
ability of space and one for availability of data.

Define a Java class for readers/writers locks, analogous to the Bounded
Buffer class of Figure (page . Allow additional readers to
acquire a reader-held lock even if writers are waiting. As an alternative
to Java, you may use another programming language with support for
mutexes and condition variables.

Modify your readers/writers locks from the prior project so no addi-
tional readers may acquire a reader-held lock if writers are waiting.

Modify your readers/writers locks from either of the prior two projects
to support an additional operation that a reader can use to upgrade
its status to writer. (This is similar to dropping the read lock and
acquiring a write lock, except that it is atomic: no other writer can
sneak in and acquire the lock before the upgrading reader does.) What
happens if two threads both hold the lock as readers, and each tries
upgrading to become a writer? What do you think a good response
would be to that situation?

Define a Java class for barriers, analogous to the BoundedBuffer class
of Figure m (page [119). Alternatively, use another programming
language, with support for mutexes and condition variables.
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Define a Java class, Semaphore, such that you can remove the import
line from Figure on page and have that BoundedBuffer class
still work.

Rewrite the semaphore-based bounded buffer of Figure m (page
so that instead of using a List, it uses an array and a couple integer
variables, just like the earlier version (Figure page . Be
sure to provide mutual exclusion for the portion of each method that
operates on the array and the integer variables.

Translate the semaphore-based bounded buffer of Figure (page[125))
into C or C++ using the POSIX API’s semaphores.

Translate the dining philosophers program of Exploration Project
into another language. For example, you could use C or C++ with
POSIX threads and mutexes.

On some systems, such as Linux, each pthreads mutex can be created
with priority inheritance turned either on or off. Using that sort of
system, you can write a program in C or C++ that tests the scenarios
considered in Exercise You will also need the ability to run
fixed-priority threads, which ordinarily requires system administrator
privileges. Exploration Project shows how you would use sudo to
exercise those privileges. That same project also shows how you would
use time to time the program’s execution and schedtool to restrict
the program to a single processor and to start the main thread at a
fixed priority. Rather than using time and schedtool, you could build
the corresponding actions into the program you write, but that would
increase its complexity.

For this program, you will need to consult the documentation for a
number of API features not discussed in this textbook. To create a
mutex with priority inheritance turned on or off, you need to pass a
pointer to a mutex attribute object into pthread_mutex_init. That
mutex attribute object is initialized using pthread_mutexattr_init
and then configured using pthread_mutexattr_setprotocol. To cre-
ate a thread with a specific fixed priority, you need to pass a pointer
to an attribute object into pthread_create after initializing the at-
tribute object using pthread_attr_init and configuring it using the
pthread_attr_setinheritsched, pthread_attr_setschedpolicy,
and pthread_attr_setschedparam procedures. To find appropriate
priority levels, you can use sched_get_priority_min. Itsreturn value
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can serve as the low priority, and you can add 1 and 2 to form the
medium and high priorities. In order to make the main thread wait
for the threads it creates, you can use pthread_join. In order for
the medium-priority thread to know when it has run for 10 seconds,
it can use gettimeofday as shown in Figure on page (For
the threads to sleep, on the the other hand, they should use the sleep
procedure as shown in Figure on page ) When the high-priority
thread is ready to terminate the whole program, it can do so using
exit(0). If you elect not to use the schedtool program, you will
likely need to use the sched_setaffinity and sched_setscheduler
API procedures instead.

Flesh out the LockFreeTicketVendor class from Figures and
m (pages and and test it along the lines of Programming
Project By putting in code that counts the number of times the
while loop retries failed compareAndSet operations, you should be
able to see that the code not only operates correctly, but also generally
does so without needing a lot of retries. You can also experimentally
insert an explicit Thread.sleep operation to delay threads between
get and compareAndSet. If you do this, you should see that the num-
ber of retries goes up, but the results still are correct. By only delaying
some threads, you should be able to show that other threads continue
operating at their usual pace.

Exploration Projects

4.1

4.2

I illustrated pipes (as a form of bounded buffer) by piping the output
from the 1s command into the tr command. One disadvantage of this
example is that there is no way to see that the two are run concurrently.
For all you can tell, 1s may be run to completion, with its output going
into a temporary file, and then tr run afterward, with its input coming
from that temporary file. Come up with an alternative demonstration
of a pipeline, where it is apparent that the two commands are run
concurrently because the first command does not immediately run to
termination.

The Java program in Figure [4.30] simulates the dining philosophers
problem, with one thread per philosopher. Each thread uses two nested
synchronized statements to lock the two objects representing the
forks to the philosopher’s left and right. Each philosopher dines many
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times in rapid succession. In order to show whether the threads are
still running, each thread prints out a message every 100000 times its
philosopher dines.

(a)

Try the program out. Depending on how fast your system is, you
may need to change the number 100000. The program should
initially print out messages, at a rate that is not overwhelmingly
fast, but that keeps you aware the program is running. With any
luck, after a while, the messages should stop entirely. This is your
sign that the threads have deadlocked. What is your experience?
Does the program deadlock on your system? Does it do so con-
sistently if you run the program repeatedly? Document what you
observed (including its variability) and the circumstances under
which you observed it. If you have more than one system available
that runs Java, you might want to compare them.

You can guarantee the program won’t deadlock by making one
of the threads (such as number 0) acquire its right fork before
its left fork. Explain why this prevents deadlock, and try it out.
Does the program now continue printing messages as long as you
let it run?

4.3 Search on the Internet for reported security vulnerabilities involving
race conditions. How many can you find? How recent is the most
recent report? Do you find any cases particularly similar to earlier
ones?

Notes

The Therac-25’s safety problems were summarized by Leveson and Turner [95].
Those problems went beyond the race bug at issue here, to also include
sloppy software development methodology, a total reliance on software to the
exclusion of hardware interlocks, and an inadequate mechanism for dealing
with problem reports from the field.

When describing races, I spoke of threads’ execution as being interleaved.
In fact, unsynchronized programs may execute in even more bizarre ways
than just interleavings. For example, one thread may see results from an-
other thread out of order. For the Java programming language, considerable
effort has gone into specifying exactly what reorderings of the threads’ ex-
ecution steps are legal. However, the bottom line for programmers is still
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public class Philosopher extends Thread{

private Object leftFork, rightFork;
private int myNumber;

public Philosopher(Object left, Object right, int number){
leftFork = left;
rightFork = right;
myNumber = number;

¥

public void run(){
int timesDined = O;
while(true){
synchronized(leftFork){
synchronized(rightFork){
timesDined++;
}
+
if (timesDined % 100000 == 0)
System.err.println("Thread " + myNumber + " is running.");

public static void main(String[] args){
final int PHILOSOPHERS = 5;
Object[] forks = new Object [PHILOSOPHERS] ;
for(int i = 0; i < PHILOSOPHERS; i++){
forks[i] = new Object();
}
for(int i = 0; i < PHILOSOPHERS; i++){
int next = (i+1) % PHILOSOPHERS;
Philosopher p = new Philosopher(forks[i], forks[next], i);
p-startQ;
}
}
}

Figure 4.30: Java program to simulate the dining philosophers
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that synchronization should be used to avoid races in the first place; trying
to understand the race behavior is a losing battle.

Cache-conscious spinlocks were introduced under the name “Test-and-
Test-and-Set” by Rudolph and Segall [122]. Although this form of spinlock
handles contention considerably better than the basic variety, it still doesn’t
perform well if many processors are running threads that are contending for
a shared spinlock. The problem is that each time a processor releases the
lock, all the other processors try acquiring it. Thus, as modern systems use
increasing numbers of processors, software designers have turned to more
sophisticated spinlocks. Instead of all the threads monitoring a single mem-
ory location, waiting for it to change, each thread has its own location to
monitor. The waiting threads are organized into a queue, although they
continue to run busy-waiting loops, unlike with a scheduler-supported wait
queue. When a thread releases the lock, it sets the memory location being
monitored by the next thread in the queue. This form of queueing spinlock
(or queue lock) was pioneered by Mellor-Crummey and Scott [I04]. For a
summary of further refinements, see Chapter 7 of the textbook by Herlihy
and Shavit [75].

Recall that my brief descriptions of the POSIX and Java APIs are no re-
placement for the official documentation on the web at |http: // www.uniz.org
and http: // java.sun.com, respectively. In particular, I claimed that each
Java mutex could only be associated with a single condition variable, unlike
in the POSIX API. Actually, version 1.5 of the Java API gained a sec-
ond form of mutexes and condition variables, contained in the java.util.
concurrent package. These new mechanisms are not as well integrated
with the Java programming language as the ones I described, but do have
the feature of allowing multiple condition variables per mutex.

My spinlocks depend on an atomic exchange instruction. I mentioned
that one could also use some other atomic read-and-update instruction, such
as atomic increment. In fact, in 1965 Dijkstra [49] showed that mutual
exclusion is also possible using only ordinary load and store instructions.
However, this approach is complex and not practical; by 1972, Dijkstra [52]
was calling it “only of historical interest.”

As mentioned in the text, waiting for a condition variable should always
be done using a loop, because when the thread finishes waiting, it may
not be the first to acquire the mutex. For example, a thread that is notified
because data was placed into a bounded buffer may find that another thread
has meanwhile emptied the buffer back out. However, there is also another
reason the loop is necessary. On rare occasions the wait procedure may
return without notify or notifyAll having been invoked, a circumstance


http://www.unix.org
http://java.sun.com

4.10. SECURITY AND SYNCHRONIZATION 157

known as a spurious wakeup.

Semaphores were proposed by Dijkstra in a privately circulated 1965
manuscript [50]; he formally published the work in 1968 [5I]. Note, how-
ever, that Dijkstra credits Scholten with having shown the usefulness of
semaphores that go beyond 0 and 1. Presumably this includes the semaphore
solution to the bounded buffer problem, which Dijkstra presents.

The idea of using a consistent ordering to prevent deadlocks was pub-
lished by Havender, also in 1968 [72]. Note that his title refers to “avoiding
deadlock.” This is potentially confusing, as today deadlock avoidance means
something different than deadlock prevention. Havender describes what is
today called deadlock prevention. Deadlock avoidance is a less practical ap-
proach, dating at least to Dijkstra’s work in 1965 and fleshed out by Haber-
mann in 1971 [67]. (Remarkably, Habermann’s title speaks of “prevention”
of deadlocks—so terminology has completely flip-flopped since the seminal
papers.) I do not present deadlock avoidance in this textbook. Havender
also described other approaches to preventing deadlock; ordering is simply
his “Approach 1.” The best of his other three approaches is “Approach 2,”
which calls for obtaining all necessary resources at the same time, rather
than one by one. Coffman, Elphick and Shoshani [35] published a survey of
deadlock issues in 1971, which made the contemporary distinction between
deadlock prevention and deadlock avoidance.

In 1971, Courtois, Heymans, and Parnas [39] described both variants of
the readers/writers locks that the programming projects call for. (In one,
readers take precedence over waiting writers, whereas in the other waiting
writers take precedence.) They also point out that neither of these two
versions prevents starvation: the only question is which class of threads can
starve the other.

Resource allocation graphs were introduced by Holt in the early 1970s;
the most accessible publication is number [79]. Holt also considered more
sophisticated cases than I presented, such as resources for which multiple
units are available, and resources that are produced and consumed rather
than merely being acquired and released.

Monitors and condition variables apparently were in the air in the early
1970s. Although the clearest exposition is by Hoare in 1974 [77], similar
ideas were also proposed by Brinch Hansen [24] and by Dijkstra [52], both
in 1972. Brinch Hansen also designed the monitor-based programming lan-
guage Concurrent Pascal, for which he later wrote a history [25].

My example of deadlock prevention in the Linux kernel was extracted
from the file kernel/sched.c in version 2.6.39.

The use of priority inheritance to limit priority inversion was explained
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by Sha, Rajkumar, and Lehoczky [129]. They also presented an alternative
solution to the priority inversion problem, known as the priority ceiling
protocol. The priority ceiling protocol sometimes forces a thread to wait
before acquiring a mutex, even though the mutex is available. In return for
that extra waiting, it guarantees that a high-priority thread will only have
to loan its priority to at most one lower-priority thread to free up a needed
mutex. This allows the designer of a real-time system to calculate a tighter
bound on each task’s worst-case execution time. Also, the priority ceiling
protocol provides a form of deadlock avoidance.

The convoy phenomenon, and its solution, were described by Blasgen et
al. [22].

Dijkstra introduced the dining philosophers problem in reference [52]. He
presented a more sophisticated solution that not only prevented deadlock
but also ensured that each hungry philosopher got a turn to eat, without
the neighboring philosophers taking multiple turns first.

The textbook by Herlihy and Shavit [75] is a good starting point for
learning about nonblocking synchronization.

The lock-free ticket vendor example relies crucially on Java’s garbage
collector (automatic memory management) so that each time an update is
performed, a new State object can be created and there are no problems
caused by reusing old objects. Without garbage collection, safe memory
reclamation for lock-free objects is considerably more interesting, as shown
by Michael [106].

The TOCTTOU race vulnerability in Sun’s mail delivery software was
reported in 1992 by a group known as [8lgm]|. Their site, http: // www.8lgm.
org, may or may not still be around when you read this, but you should be
able to find a copy of the advisory somewhere on the web by searching for
[8lgm]-Advisory-5.UNIX.mail.24-Jan-1992.
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Chapter 5

Atomic Transactions

5.1 Introduction

In Chapter [ I described mutual exclusion as a mechanism for ensuring that
an object undergoes a sequence of invariant-preserving transformations and
hence is left in a state where the invariant holds. (Such states are called
consistent states.) In particular, this was the idea behind monitors. Any
monitor object is constructed in a consistent state. Any public operation
on the monitor object will work correctly when invoked in a consistent state
and will reestablish the invariant before returning. No interleaving of actions
from different monitor operations is allowed, so the monitor’s state advances
from one consistent state to the next.

In this chapter, I will continue on the same theme of invariant-preserving
state transformations. This time through, though, I will address two issues
I ignored in Chapter

1. Some invariants span multiple objects; rather than transforming a
single object from a consistent state to another consistent state, you
may need to transform a whole system of objects from one consistent
state to the next. For example, suppose you use objects to form a
rooted tree, with each object knowing its parent and its children, as
shown in Figure An invariant is that X has Y as a child if and
only if Y has X as its parent. An operation to move a node to a new
position in the tree would need to change three objects (the node, the
old parent, and the new parent) in order to preserve the invariant.

2. Under exceptional circumstances an operation may fail, that is, be
forced to give up after doing only part of its invariant-preserving trans-

159
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—> Parent points to child === Child points to parent |

I O 1o
GO O 1o

(b) (©

Figure 5.1: Rooted trees with pointers to children and parents: (a) example
satisfying the invariant; (b) invariant violated because E’s parent is now C,
but E is still a child of D and not of C; (c) invariant restored because the
only child pointer leading to E again agrees with E’s parent pointer. The
complete transformation from Part (a) to Part (c) requires modifications to
nodes C, D, and E.

formation. For example, some necessary resource may be unavailable,
the user may press a Cancel button, the input may fail a validity check,
or a hardware failure may occur. Nonetheless, the system should be
left in a consistent state.

An atomic transaction is an operation that takes a system from an ob-
servable initial state to an observable final state, without any intermediate
states being observable or perturbable by other atomic transactions. If a
system starts with a consistent initial state and modifies that state using
only invariant-preserving atomic transactions, the state will remain consis-
tent. Atomicity must be preserved in the face of both concurrency and
failures. That is, no transaction may interact with a concurrently running
transaction nor may any transaction see an intermediate state left behind
by a failed transaction. The former requirement is known as isolation. The
latter requirement lacks a generally agreed-upon name; I will call it failure
atomicity.

Often, atomic transactions are simply called transactions. In fact, ac-
cording to many authors, atomicity is part of the definition of a transaction.
Unfortunately, there are other authors for whom transactions need not be
atomic. Because of this lack of agreement on the nomenclature, I have in-
troduced this chapter with the full phrase “atomic transactions” to make
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my focus clear. Henceforth, I will skip the modifier “atomic” and use only
“transactions,” with the understanding that they are atomic unless other-
wise specified.

Many transaction systems require not only atomicity, but also durability.
A transaction is durable if the state of a successfully completed transaction
remains intact, even if the system crashes afterward and has to be rebooted.
Each successful transaction ends with an explicit commit action, which sig-
nifies that the consistent final state has been established and should be
made visible to other transactions. With durable transactions, if the system
crashes after the commit action, the final transformed state will be intact af-
ter system restart. If the crash occurs before the commit action, the system
will be back in the initial, unchanged state after restart.

Note that failure atomicity is slightly simpler for nondurable transac-
tions. Atomicity across system crashes and restarts is easy to arrange: by
clearing all memory on restart, you can guarantee that no partially updated
state is visible after the restart—mno updates at all, partial or otherwise,
will remain. This clearing of memory will happen automatically if the com-
puter’s main semiconductor DRAM memory is used, because that memory
is wolatile, that is, it does not survive reboots. (Strictly speaking, volatility
means the memory does not survive a loss of power; reboots with the power
left on generally clear volatile memory as well, however.)

Even nondurable transactions must ensure failure atomicity for less dra-
matic failures in which the system is not rebooted. For example, a trans-
action might do some updates, then discover invalid input and respond by
bailing out. To take another example, recovering from a detected deadlock
might entail aborting one of the deadlocked transactions. Both situations
can be handled using an explicit abort action, which indicates the transac-
tion should be terminated with no visible change made to the state. Any
changes already made must be concealed, by undoing them.

In 1983, Harder and Reuter coined a catchy phrase by saying that
whether a system supports transactions is “the ACID test of the system’s
quality.” The ACID acronym indicates that transactions are atomic, con-
sistent, isolated, and durable. This acronym is quite popular, but somewhat
redundant. As you have seen, a transaction system really only provides
two properties: atomicity and durability. Consistency is a property of sys-
tem states—a state is consistent if the invariants hold. Transactions that are
written correctly (so each preserves invariants) will leave the state consistent
if they execute atomically. Isolation simply is another name for atomicity
in the face of concurrency: concurrent transactions must not interact.

The properties of atomicity and durability refer to transactions, inde-
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pendent of the objects on which the transactions operate. Returning to the
earlier rooted tree example of moving a node to a new position, a transaction
might modify the node, the old parent, and the new parent, all within one
atomic unit. This stands in contrast to monitors, each of which controls a
single object.

To obtain the requisite atomicity with monitors, the whole tree could
be a single monitor object, instead of having one monitor per node. The
tree monitor would have an operation to move one of its nodes. In general,
this approach is difficult to reconcile with modularity. Moreover, lumping
lots of data into one monitor creates a performance problem. Making the
whole system (or a large chunk of it) into one monitor would prevent any
concurrency. Yet it ought to be possible to concurrently move two nodes in
different parts of a tree. Atomic transactions allow concurrency of this sort
while still protecting the entire transformation of the system’s state.

This point is worth emphasizing. Although the system’s state remains
consistent as though only one transaction were executed at a time, transac-
tions in fact execute concurrently, for performance reasons. The transaction
system is responsible for maintaining atomicity in the face of concurrency.
That is, it must ensure that transactions don’t interact with one another,
even when running concurrently. Often the system will achieve this isolation
by ensuring that no transaction reads from any data object being modified
by another transaction. Enforcing this restriction entails introducing syn-
chronization that limits, but does not completely eliminate, the concurrency.

In Section[5.2] I will sketch several examples of the ways in which transac-
tions are used by middleware and operating systems to support application
programs. Thereafter, I present techniques used to make transactions work,
divided into three sections. First, Section [5.3| explains basic techniques for
ensuring the atomicity of transactions, without addressing durability. Sec-
ond, Section [5.4] explains how the mechanism used to ensure failure atomic-
ity can be extended to also support durability. Third, Section [5.5| explains
a few additional mechanisms to provide increased concurrency and coor-
dinate multiple participants cooperating on a single transaction. Finally,
Section [5.6] is devoted to security issues. The chapter concludes with exer-
cises, exploration and programming projects, and notes.

5.2 Example Applications of Transactions

The transaction concept is much more pervasive in middleware than in op-
erating systems. Therefore, of the three examples presented in the following
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subsections, the first two are from middleware systems. Sections and
5.2.2| explain the two most long-standing middleware applications, namely
database systems and message-queuing systems. Moving into the operat-
ing systems arena, Section [5.2.3] explains the role that transactions play in
journaled file systems, which are the current dominant form of file system.

5.2.1 Database Systems

The transaction concept is most strongly rooted in database systems; for
decades, every serious database system has provided transactions as a service
to application programmers. Database systems are an extremely important
form of middleware, used in almost every enterprise information system.
Like all middleware, database systems are built on top of operating system
services, rather than raw hardware, while providing general-purpose services
to application software. Some of those services are synchronization services:
just as an operating system provides mutexes, a database system provides
transactions.

On the other hand, transaction services are not the central, defining
mission of a database system. Instead, database systems are primarily con-
cerned with providing persistent data storage and convenient means for ac-
cessing the stored data. Nonetheless, my goal in this chapter is to show how
transactions fit into relational database systems. I will cover just enough
of the SQL language used by such systems to enable you to try out the ex-
ample on a real system. In particular, I show the example using the Oracle
database system.

Relational database systems manipulate tables of data. In Chapter [A]s
discussion of deadlock detection, I showed a simple example from the Oracle
database system involving two accounts with account numbers 1 and 2. The
scenario (as shown in Figure on page involved transferring money
from each account to the other, by updating the balance of each account.
Thus, that example involved a table called accounts with two columns,
account_number and balance. That table can be created with the SQL
command shown here:

create table accounts (
account_number int primary key,
balance int);

Similarly, you can initialize account 1 to $750 and account 2 to $2250 by
using the following commands:
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insert into accounts values (1, 750);
insert into accounts values (2, 2250);

At this point, you can look at the table with the select command:
select * from accounts;
and get the following reply:

ACCOUNT_NUMBER BALANCE

(If you are using a relational database other than Oracle, the format of the
table may be slightly different. Of course, other aspects of the example may
differ as well, particularly the deadlock detection response.)

At this point, to replicate the deadlock detection example from Fig-
ure you will need to open up two different sessions connected to the
database, each in its own window. In the first session, you can debit $100
from account 1, and in the second session you can debit $250 from account 2.
(See page for the specific SQL commands.) Now in session one, try to
credit the $100 into account 2; this is blocked, because the other session has
locked account 2. Similarly, session two is blocked trying to credit its $250
into account 1, creating a deadlock, as illustrated in Figure As you
saw, Oracle detects the deadlock and chooses to cause session one’s update
request to fail.

Having made it through all this prerequisite setup, you are in a position
to see the role that transactions play in situations such as this. Each of the
two sessions is processing its own transaction. Recall that session one has
already debited $100 from account 1 but finds itself unable to credit the
$100 into account 2. The transaction cannot make forward progress, but on
the other hand, you don’t want it to just stop dead in its tracks either. Stop-
ping would block the progress of session two’s transaction. Session one also
cannot just bail out without any cleanup: it has already debited $100 from
account 1. Debiting the source account without crediting the destination
account would violate atomicity and make customers angry besides.

Therefore, session one needs to abort its transaction, using the rollback
command. Aborting will back out of the transaction’s earlier debiting of
$100 from account 1 and release its lock on that account. As a result,
session two’s attempt to credit $250 into account 1 can finally stop hanging
and complete. Continuing my earlier tradition of showing session one at the
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Session 1 Session 2

| Try debiting $100 from account 1 |

| Completes, leaving account 1 locked |

| Try debiting $250 from account 2 |

| Completes, leaving account 2 locked |

| Try crediting $100 to account 2 |

@ Blocks, waiting for account 2 |

| Try crediting $250 to account 1 |

Deadlock!

| Blocks, waiting for account 1 D

Figure 5.2: Two transfer transactions deadlock when each waits for exclusive
access to the account for which the other already has obtained exclusive
access. In this diagram, the vertical dimension represents the passage of
time.



166 CHAPTER 5. ATOMIC TRANSACTIONS

left margin and session two indented four spaces, the interaction would look
like:

SQL> rollback;
Rollback complete.

1 row updated.

Of course, whoever was trying to transfer $100 from account 1 to ac-
count 2 still wants to do so. Therefore, after aborting that transaction, you
should retry it:

SQL> update accounts set balance = balance - 100
where account_number = 1;

This command will hang, because session two’s transaction now has both
accounts locked. However, that transaction has nothing more it needs to
do, so it can commit, allowing session one to continue with its retry:

SQL> commit;
Commit complete.
1 row updated.

SQL> update accounts set balance = balance + 100
where account_number = 2;

1 row updated.

SQL> commit;

Commit complete.

SQL> select * from accounts;

ACCOUNT _NUMBER BALANCE
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Notice that at the end, the two accounts have been updated correctly. For
example, account 1 does not look as though $100 was debited from it twice—
the debiting done in the aborted transaction was wiped away. Figure [5.3
illustrates how the transactions recover from the deadlock.

In a large system with many accounts, there may be many concurrent
transfer transactions on different pairs of accounts. Only rarely will a dead-
lock situation such as the preceding example arise. However, it is nice to
know that database systems have a clean way of dealing with them. Any
transaction can be aborted, due to deadlock detection or any other reason,
and retried later. Moreover, concurrent transactions will never create in-
correct results due to races; that was why the database system locked the
accounts, causing the temporary hanging (and in one case, the deadlock)
that you observed.

5.2.2 Message-Queuing Systems

Message-queuing systems form another important class of middleware, and
like database systems, they support the transaction concept. Developers
of large-scale enterprise information systems normally use both forms of
middleware, although message-queuing systems are more avoidable than
database systems. As with database systems, the primary mission of mes-
sage queuing is not the support of transactions. Instead, message-queuing
systems specialize in the provision of communication services. As such, I will
discuss them further in Chapter as part of a discussion of the broader
family of middleware to which they belong: messaging systems or message-
oriented middleware (MOM).

A straightforward application of messaging consists of a server accessed
through a request queue and a response queue. As shown in Figure [5.4
the server dequeues a request message from the request queue, carries out
the required processing, and enqueues a response message into the response
queue. (Think about an office worker whose desk has two baskets, labeled
“in” and “out,” and who takes paper from one, processes it, and puts it in
the other.)

These three steps (dequeue, process, enqueue) are grouped together as
an atomic transaction. If any of the three steps fail, the request message
is left in the input queue, ready to be retried. No request will be lost, nor
will there ever be visible signs of repeated processing, such as duplicated
response messages. (Of course, some causes of failure will affect retries
as well. For that reason, realistic systems generally keep count of retries
and after a while divert the request message, for example, into a human
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Session 1 Session 2

@ Blocks, waiting for account 2 |

| Try crediting $250 to account 1 |

Deadlock!

Y
'S 2In31y woi

| Blocks, waiting for account 1 D
~

| Deadlock detected-crediting fails |

!

| Roll back |

Crediting completes, leaving
account 1 locked

| Try debiting $100 from account 1 |

!

| Blocks, waiting for account 1 |

| Commit

| Completes, leaving account 1 locked |

| Try crediting $100 to account 2 |

!

| Completes, leaving account 2 locked |

| Commit |

Figure 5.3: Transactions recover from their deadlock when one rolls back,
releasing the lock it holds. As in the prior figure, the vertical dimension
represents the passage of time.
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Server

Request queue Response queue

(b)

Figure 5.4: An analogy: (a) a server dequeues a message from its request
queue, processes the request, and enqueues a message into the response
queue; (b) an office worker takes paper from the In basket, processes the
paperwork, and puts it into the Out basket.

troubleshooter’s request queue.)

Message-queuing systems also provide durability, so that even if the sys-
tem crashes and restarts, each request will generate exactly one response.
In most systems, applications can opt out of durability in order to reduce
persistent storage traffic and thereby obtain higher performance.

To provide greater concurrency, a system may have several servers de-
queuing from the same request queue, as shown in Figure This config-
uration has an interesting interaction with atomicity. If the dequeue action
is interpreted strictly as taking the message at the head of the queue, then
you have to wait for the first transaction to commit or abort before you can
know which message the second transaction should dequeue. (If the first
transaction aborts, the message it tried to dequeue is still at the head of
the queue and should be taken by the second transaction.) This would pre-
vent any concurrency. Therefore, message-queuing systems generally relax
queue ordering a little, allowing the second message to be dequeued even
before the fate of the first message is known. In effect, the first message is
provisionally removed from the queue and so is out of the way of the second
message. If the transaction handling the first message aborts, the first mes-
sage is returned to the head of the queue, even though the second message
was already dequeued.

More advanced workflow systems may include several processing steps,
with each processing step connected to the next by an intermediate message
queue. In these systems, each processing stage is treated as a separate
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Server

Server

Request queue Response queue

Server

Figure 5.5: Several message-driven servers in parallel can dequeue from a
common request queue and enqueue into a common response queue. To
allow concurrent operation, messages need not be provided in strict first-in,
first-out order.

transaction. If the transaction commits, that stage’s input is gone from its
inbound queue, and its output is in the outbound queue. Seen as a whole,
the workflow may not exhibit atomicity. For example, failure in a later
processing stage will not roll back an earlier stage.

Consider a sale of merchandise as an example workflow, as shown in Fig-
ure One transaction might take an incoming order, check it for validity,
and generate three output messages, each into its own outbound queue: an
order confirmation (back to the customer), a billing record (to the accounts
receivable system), and a shipping request (to the shipping system). Another
transaction, operating in the shipping system, might dequeue the shipping
request and fulfill it. If failure is detected in the shipping transaction, the
system can no longer abort the overall workflow; the order confirmation and
billing have already been sent. Instead, the shipping transaction has no al-
ternative but to drive the overall workflow forward, even if in a somewhat
different direction than hoped for. For example, the shipping transaction
could queue messages apologizing to the customer and crediting the pur-
chase price back to the customer’s account. Figure shows the workflow
with these extra steps.

Even in a system in which one transaction may bill the customer only
to have a later compensating transaction refund the billed amount, using
atomic transactions simplifies application programming. Imagine how com-
plex it would be to reason about a large workflow if each individual process-
ing stage could fail midway through or could interact with other concurrently
executing stages. By treating each workflow stage as an atomic transaction,
a messaging system considerably reduces the application designer’s cognitive
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Figure 5.6: In this simplified workflow for selling merchandise, processing a
single order produces three different responses. The response queues from
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Figure 5.7: In this workflow, a failure in shipping must produce compensat-
ing responses, as it cannot abort the overall workflow. The compensating
responses credit the customer’s account for the previously debited amount
and send an apology to the customer indicating that the previously con-
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burden. A diagram, such as Figure can provide an accurate abstraction
of the system’s observable behaviors by showing the system as processing
stages linked by message queues.

Finally, consider how the sales workflow keeps track of available mer-
chandise, customer account balances, and other information. You should be
able to see that individual processing stages of a workflow will frequently
have to use a database system. As such, transactions will involve both mes-
sage queues and databases. Atomicity needs to cover both; if a transaction
aborts, you want the database left unchanged and the request message left
queued. In Section I will explain how this comprehensive atomicity
can be achieved by coordinating the systems participating in a transaction.

5.2.3 Journaled File Systems

The transaction concept has been employed in middleware both longer and
more extensively than in operating systems. However, one application in
operating systems has become quite important. Most contemporary oper-
ating systems provide file systems that employ atomic transactions to at
least maintain the structural consistency of the file system itself, if not the
consistency of the data stored in files. These file systems are known as jour-
naled file systems (or journaling file systems) in reference to their use of an
underlying mechanism known as a journal. I will discuss journals in Sections
and [5.4) under their alternative name, logs. Examples of journaled file
systems include NTF'S, used by Microsoft Windows; HF'S Plus, used by Mac
OS X; and ext3fs, reiserfs, JF'S, and XFS, used by Linux. (The latter two
originated in proprietary UNIX systems: JFS was developed by IBM for
AIX, and XFS was developed by SGI for IRIX.) File systems that are not
journaled need to use other techniques, which I describe in Section to
maintain the consistency of of their data structures.

File systems provide a more primitive form of data storage and access
than database systems. As you will see in Chapter [8, contemporary operat-
ing systems generally treat a file as an arbitrarily large, potentially extensible
sequence of bytes, accessed by way of a textual name. The names are orga-
nized hierarchically into nested directories or folders. Typical operations on
files include create, read, write, rename, and delete.

Underlying this simple abstraction are some largely invisible data struc-
tures, known as metadata, that help locate and organize the data. For
example, because each file can grow in size, the file system must be free to
store different parts of a file in different locations. As such, the file system
must store metadata for each file indicating where each portion of the file is
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located. Moreover, the file system must store information concerning what
parts of the storage are in use, so that it can allocate unused space for a file
that is growing.

The existence of this metadata means that even simple file operations can
involve several updates to the information in persistent storage. Extending
a file, for example, must update both the information about free space and
the information about space allocated to that file. These structures need to
be kept consistent; it would be disastrous if a portion of the storage were
both used for storing a file and made available for allocation to a second file.
Thus, the updates should be done as part of an atomic transaction.

Some atomic transactions may even be visible to the user. Consider the
renaming of a file. A new directory entry needs to be created and an old
entry removed. The user wants these two changes done atomically, without
the possibility of the file having both names, or neither.

Some journaled file systems treat each operation requested by an appli-
cation program as an atomic and durable transaction. On such a system,
if a program asks the system to rename a file, and the rename operation
returns with an indication of success, the application program can be sure
that renaming has taken place. If the system crashes immediately afterward
and is rebooted, the file will have its new name. Said another way, the
rename operation includes commitment of the transaction. The application
program can tell that the transaction committed and hence is guaranteed
to be durable.

Other journaled file systems achieve higher performance by delaying
transaction commit. At the time the rename operation returns, the transac-
tion may not have committed yet. Every minute or so, the file system will
commit all transactions completed during that interval. As such, when the
system comes back from a crash, the file system will be in some consistent
state, but maybe not a completely up-to-date one. A minute’s worth of
operations that appeared to complete successfully may have vanished. In
exchange for this risk, the system has gained the ability to do fewer writes
to persistent storage, which improves performance. Notice that even in this
version, transactions are providing some value. The state found after re-
boot will be the result of some sequence of operations (even if possibly a
truncated sequence), rather than being a hodgepodge of partial results from
incomplete and unordered operations.

Often, journaled file systems protect only metadata; the application data
stored in files may be left in an inconsistent state after a crash. In particular,
some writes into the files may not have taken effect, and the writes that are
lost in this way are not necessarily the ones performed most recently. Even
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many journaled file system that do better than this offer only a guarantee
that all write operations that completed before a crash will be reflected in
the state after the crash. With this limited guarantee, if a program wants to
do multiple writes in an atomic fashion (so that all writes take place or none
do), the file system will not provide any assistance. However, a file system
can also be designed to fully support transactions, including allowing the
programmer to group multiple updates into a transaction. One example of
such a fully transactional file system is Transactional NTFS (TxF'), which
was added to Microsoft Windows in the Vista version.

5.3 Mechanisms to Ensure Atomicity

Having seen how valuable atomic transactions are for middleware and op-
erating systems, you should be ready to consider how this value is actually
provided. In particular, how is the atomicity of each transaction ensured?
Atomicity has two aspects: the isolation of concurrent transactions from one
another and the assurance that failed transactions have no visible effect. In
Section you will see how isolation is formalized as serializability and
how a particular locking discipline, two-phase locking, is used to ensure se-
rializability. In Section you will see how failure atomicity is assured
through the use of an undo log.

5.3.1 Serializability: Two-Phase Locking

Transactions may execute concurrently with one another, so long as they
don’t interact in any way that makes the concurrency apparent. That is,
the execution must be equivalent to a serial execution, in which one trans-
action runs at a time, committing or aborting before the next transaction
starts. Any execution equivalent to a serial execution is called a serializable
execution. In this section, I will more carefully define what is means for
two executions to be equivalent and hence what it means for an execution
to be serializable. In addition, I will show some simple rules for using read-
ers/writers locks that guarantee serializability. These rules, used in many
transaction systems, are known as two-phase locking.

Equivalence, and hence serializability, can be defined in several somewhat
different ways. The definitions I give are the simplest I could find and
suffice to justify two-phase locking, which is the mechanism normally used
to achieve serializability in practical systems. However, you should be aware
that more general definitions are needed in order to accommodate more
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advanced concurrency control mechanisms. The notes at the end of the
chapter provide pointers to some of these more sophisticated alternatives.

Each transaction executes a sequence of actions. I will focus on those
actions that read or write some stored entity (which might be a row in a
database table, for example) and those actions that lock or unlock a read-
ers/writers lock. Assume that each stored entity has its own lock associated
with it. I will use the following notation:

e r;(z) means a read of entity = by transaction 7)j; when I want to show
the value that was read, I use rj(z,v), with v as the value.

e w;(x) means a write of entity « by transaction 7); when I want to
show the value being written, I use w;(z,v), with v as the value.

e s;(x) means an acquisition of a shared (that is, reader) lock on entity
x by transaction Tj.

e ¢;(x) means an acquisition of an exclusive (that is, writer) lock on
entity o by transaction T}.

e 5;(x) means an unlocking of a shared lock on entity x by transaction
T;.

e ¢;(x) means an unlocking of an exclusive lock on entity x by transac-
tion Tj.

e u;(x) means an upgrade by transaction 7T} of its hold on entity z’s lock
from shared status to exclusive status.

Each read returns the most recently written value. Later, in Section [5.5.1
I will revisit this assumption, considering the possibility that writes might
store each successive value for an entity in a new location so that reads can
choose among the old values.

The sequence of actions executed by a transaction is called its history.
Because the transactions execute concurrently, if you were to write all their
actions in the order they happen, the transactions’ histories would be in-
terleaved. This time-ordered interleaving of all the transactions’ histories
is called the system’s history. All locking actions are shown at the time
when the lock is granted, not at the possibly earlier time when the lock is
requested. Assume that the histories include all the relevant actions. In
particular, if a transaction aborts and does some extra writes at that time
to undo the effect of earlier writes (as you will see in Section , those
undo writes must be explicitly listed in the history. Note also that I am
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implicitly assuming the transactions have no effects other than on storage;
in particular, they don’t do any I/0.

Let’s look at some examples. Suppose that x and y are two variables
that are initially both equal to 5. Suppose that transaction 77 adds 3 to each
of the two variables, and transaction 75 doubles each of the two variables.
Each of these transactions preserves the invariant that z = y.

One serial history would be as follows:

61(1‘),T1($,5),’wl(.ilf,8),51(%),61(];),7“1(@/,5) UI1(y, ) ( )
62(1‘),7“2(33‘,8),1,02(.7), 16),@2($),62(y),7“2(y, ) w2(yv 16) €2 ( )

Before you go any further, make sure you understand this notation; as di-
rected in Exercise write out another serial history in which transaction
T happens before transaction T3. (The sequence of steps within each trans-
action should remain the same.)

In the serial history I showed, x and y both end up with the value 16.
When you wrote out the other serial history for these two transactions, you
should have obtained a different final value for these variables. Although
the invariant = y again holds, the common numerical value of z and
y is not 16 if transaction 75 goes first. This makes an important point:
transaction system designers do not insist on deterministic execution, in
which the scheduling cannot affect the result. Serializability is a weaker
condition.

Continuing with the scenario in which 77 adds 3 to each variable and T5
doubles each variable, one serializable—but not serial—history follows:

e1(x),r1(x,5), w1 (x,8),€1(x), ea(x), ra(z, 8), wa(z, 16), €2(x),
€1 (y)’ 1 (y’ 5)7 w1 (yv 8)761 (y)v €2 (y)’ T2(y’ 8)7 wQ(yv 16)’ éQ(y)

To convince others that this history is serializable, you could persuade them
that it is equivalent to the serial history shown previously. Although transac-
tion T starts before transaction T3 is finished, each variable still is updated
the same way as in the serial history.

Because the example transactions unlock x before locking y, they can
also be interleaved in a nonserializable fashion:

ei(x),r1(z,5),w(z,8),€1(x), ea(x), r2(x, 8), wa(x, 16), €2(x),
eZ(y)a TQ(y; 5)7 U)Q(y, 10)7 € (y)7 €1 (y)a 1 (y7 10)7 w1(y, 13)7é1(y)
Here, the invariant x = y is broken: at the end, z is equal to 16, but y is

equal to 13. Thus, this history is not equivalent to either of the two serial
histories.
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My primary goal in this section is to show how locks can be used in a
disciplined fashion that rules out nonserializable histories. (In particular,
you will learn that in the previous example, x should not be unlocked until
after y is locked.) First, though, I need to formalize what it means for two
histories to be equivalent, so that the definition of serializability is rigorous.

I will make two assumptions about locks:

1. Each transaction correctly pairs up lock and unlock operations. That
is, no transaction ever locks a lock it already holds (except upgrading
from shared to exclusive status), unlocks a lock it doesn’t hold, or
leaves a lock locked at the end.

2. The locks function correctly. No transaction will ever be granted a
lock in shared mode while it is held by another transaction in exclusive
mode, and no transaction will ever be granted a lock in exclusive mode
while it is held by another transaction in either mode.

Neither of these assumptions should be controversial.

Two system histories are equivalent if the first history can be turned into
the second by performing a succession of equivalence-preserving swap steps.
An equivalence-preserving swap reverses the order of two adjacent actions,
subject to the following constraints:

e The two actions must be from different transactions. (Any transac-
tion’s actions should be kept in their given order.)

e The two actions must not be any of the following seven conflicting
pairs:

R o
ol
<
&

Forbidding swaps of the first four pairs ensures locks continue properly
functioning: T}, may not lock z’s lock until after T; has unlocked it.
The next two conflicts ensure the read actions return the correct values:
swapping a read and a write would change which value the read action
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returns. The final conflict ensures that x is left storing the correct
value.

Figure illustrates some of the constraints on equivalence-preserving
swaps. Note that in all the conflicts, the two actions operate on the same
stored entity (shown as x); any two operations on different entities by dif-
ferent transactions can be reversed without harm. In Exercise [5.3], show
that this suffices to prove that the earlier example of a serializable history
is indeed equivalent to the example serial history.

Even if two actions by different transactions involve the same entity, they
may be reversed without harm if they are both reads. Exercise includes
a serializable history where reads of an entity need to be reversed in order
to arrive at an equivalent serial history.

I am now ready to state the two-phase locking rules, which suffice to
ensure serializability. For now, concentrate on understanding what the rules
say; afterward I will show that they suffice. A transaction obeys two-phase
locking if:

e For any entity that it operates on, the transaction locks the corre-
sponding lock exactly once, sometime before it reads or writes the
entity the first time, and unlocks it exactly once, sometime after it
reads or writes the entity the last time.

e For any entity the transaction writes into, either the transaction ini-
tially obtains the corresponding lock in exclusive mode, or it upgrades
the lock to exclusive mode sometime before writing.

e The transaction performs all its lock and upgrade actions before per-
forming any of its unlock actions.

Notice that the two-phase locking rules leave a modest amount of flex-
ibility regarding the use of locks. Consider the example transactions that
read and write x and then read and write y. Any of the following transaction
histories for T7 would obey two-phase locking:

i 61(.%), 1 ($)7 w1 (CL’), el(y)aél(x)7 Tl(y)v w1 (y)aél(y)
i el(x)v el(y)7 Tl(x)’ w1 (x)v 1 (y)7 wl(y)7€1 (y)vél(x)
i 81(:13), 7’1(56), ’U,l(:l,’), w1($), Sl(?/)? Tl(y)a ul(y)7 wl(y)aél(x)yél(y)

In Exercise [5.6] you can come up with several additional two-phase possi-
bilities for this transaction.
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Figure 5.8: Tllegal and legal swaps: (a) illegal to swap steps from one trans-
action; (b) illegal to swap two conflicting operations on the same entity; (c)
legal to swap operations on different entities by different transactions; (d)
legal to swap nonconflicting operations by different transactions.

If the programmer who writes a transaction explicitly includes the lock
and unlock actions, any of these possibilities would be valid. More com-
monly, however, the programmer includes only the reads and writes, without
any explicit lock or unlock actions. An underlying transaction processing
system automatically inserts the lock and unlock actions to make the pro-
gramming simpler and less error-prone. In this case, the system is likely to
use three very simple rules:

1. Immediately before any read action, acquire the corresponding lock in
shared mode if the transaction doesn’t already hold it.

2. Immediately before any write action, acquire the corresponding lock
in exclusive mode if the transaction doesn’t already hold it. (If the
transaction holds the lock in shared mode, upgrade it.)

3. At the very end of the transaction, unlock all the locks the transaction
has locked.

You should be able to convince yourself that these rules are a special case of
two-phase locking. By holding all the locks until the end of the transaction,
the system need not predict the transaction’s future read or write actions.
I still need to prove that two-phase locking suffices to ensure serializabil-
ity. Recall that a history is serializable if it is equivalent to a serial history.
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Thus, I need to show that so long as two-phase locking is followed, you
can find a sequence of equivalence-preserving swaps that will transform the
system history into a serial one. Please understand that this transforma-
tion of the history into a serial one is just a proof technique I am using to
help understand the system, not something that actually occurs during the
system’s operation. Transaction systems are not in the business of forcing
transactions to execute serially; concurrency is good for performance. If
anything, the running transaction system is doing the reverse transforma-
tion: the programmer may have thought in terms of serial transactions, but
the system’s execution interleaves them. I am showing that this interleaving
is equivalence-preserving by showing that you can back out of it.
To simplify the proof, I will use the following vocabulary:

e The portion of the system history starting with 7}’s first action and
continuing up to, but not including, 7}’s first unlock action is phase
one of Tj.

e The portion of the system history starting with T)’s first unlock action
and continuing up through 7}’s last action is phase two of Tj.

e Any action performed by T}, during 7T}’s phase one (with j # k) is
a phase one impurity of T;. Similarly, any action performed by T},
during T}’s phase two (with j # k) is a phase two impurity of Tj.

e If a transaction has no impurities of either kind, it is pure. If all
transactions are pure, then the system history is serial.

My game plan for the proof is this. First, I will show how to use
equivalence-preserving swaps to purify any one transaction, say, Tj. Sec-
ond, I will show that if T}, is already pure, purifying 7 does not introduce
any impurities into 7). Thus, you can purify the transactions one at a time,
without having to worry about wrecking the transactions purified earlier.

If T} is impure, you can purify it by first removing any phase one impuri-
ties and then any phase two impurities. To remove the phase one impurities,
you can remove the leftmost one, and then repeat with the new leftmost one,
until all are gone. The leftmost phase one impurity of 7; must be preceded
by an action of Tj. I will show that those two actions can be reversed by an
equivalence-preserving swap. That moves the leftmost impurity further to
the left. If this swapping is done repeatedly, the impurity will percolate its
way further and further to the left until it passes the first operation of T},
at which point it will cease to be an impurity of 7Tj. Phase two impurities
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can be removed similarly, starting with the rightmost one, by percolating
them to the right until they pass the last operation of Tj.

I need to show that the leftmost phase one impurity of T; can be swapped
with its left-hand neighbor, and that the rightmost phase two impurity can
be swapped with it right-hand neighbor. Recall that to legally swap two
actions, they must be from different transactions, and they must not be one
of the seven forbidden conflicting pairs. In order to be the leftmost impurity
of T}, an action must be performed by some other transaction, 7}, and have
an action from T} as its left-hand neighbor. (A similar argument applies for
the rightmost impurity and its right-hand neighbor.) Thus, the actions are
definitely from different transactions, and the only remaining concern is the
seven conflicts.

For the leftmost phase one impurity and its left-hand neighbor, you
cannot have any of these conflicts:

because transaction 7T does not do any unlock actions in phase one. (Re-
call the definition of phase one.) Nor can you have any of the other three
conflicts:

5. wj(x), ()
6. rj(x), wg(x)
7. wi(z), wy(z)

because the two-phase locking rules ensure that each read or write action is
performed only with the appropriate lock held. There is no way transactions
T; and Tj, can both hold the lock on z, with at least one of them being
in exclusive mode. Similar arguments rule out any conflict between the
rightmost phase two impurity and its right-hand neighbor; in Exercise
you can fill in the details.

You have now seen that equivalence-preserving swap steps suffice to pu-
rify T; by percolating each of its phase one impurities out to the left and
each of its phase two impurities out to the right. The goal is to serialize an
arbitrary system history that complies with the two-phase locking rules. I
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would like to pick one of its transactions that is impure and purify it, then
repeat with another and keep going until all the transactions are pure, that
is, until the system history has become serial. For this plan to work, I need
to be sure that purifying one transaction doesn’t wreck the purity of any
already pure transaction.

Purifying T} doesn’t touch any actions that don’t lie between Tj’s first
action and its last action. Thus, the only way purifying T could endanger
the existing purity of T}, is if T}, lies at least partly within 7};’s span. However,
because T}, is pure, either all of it lies within 7}’s span or none of it does, so
you need only consider the case that all of T}, lies within 7};’s span. In fact,
you should be able to convince yourself of something stronger: if any action
of a pure transaction 7}, lies within 7}’s span, then all of T}, lies within a
single one of T)’s phases (either all within phase one, or all within phase
two).

If T}’s actions occupy consecutive positions within phase one, purifying
T; will percolate all of T},’s actions to the left and leave them in consecutive
positions preceding the start of 7). Similarly, if 7}, is within phase two, all
its actions will move to the right and wind up as a consecutive block to the
right of T;. Thus, T},’s purity is preserved.

You can conclude, then, that any system history obeying the two-phase
locking rules is serializable. Recall that serializable histories are equivalent
to serial histories. In a serial history composed from invariant-preserving
transactions, each transaction moves the system from one consistent state
to another. Thus, so long as two-phase locking is used, the system will
behave as though it is moving from consistent state to consistent state.
In particular, this situation can be obtained simply by locking each entity
before operating on it the first time and holding all locks until the end of
the transaction.

Even though serializable histories are equivalent to serial histories, they
differ in one important regard. Unlike a serial history, a serializable history
may include concurrency between transactions. This allows the system to
achieve higher performance but entails a risk of deadlock that is not present
in serial execution. If deadlock occurs, one of the deadlocked transactions
needs to be aborted. This abortion is one way in which a transaction can
fail. Therefore, I will next turn to the question of how atomicity is preserved
in the face of transaction failures.



5.3. MECHANISMS TO ENSURE ATOMICITY 183

5.3.2 Failure Atomicity: Undo Logging

Recall that atomic transactions may temporarily put the system in an in-
consistent state so long as they restore consistency before committing. For
example, in the middle of a transfer from one account to another, money
can temporarily “disappear” (not be in any account) so long as the money
has “reappeared” in the destination account by the time the transfer is over.
You have already seen one way to protect against harm from these tempo-
rary inconsistencies: by using two-phase locking, you prevent any concurrent
transaction from being affected by the inconsistent state. Now you need to
deal with another possible source of trouble: what if a transaction aborts
after making some, but not all, of its updates to the state? How can you
prevent later transactions from seeing an inconsistent state?

Transactions fail for many reasons. For example, the transfer transaction
might debit money from the source account, and then before crediting it
to the destination account, discover that the destination account doesn’t
exist. Alternatively, the system might detect a deadlock when trying to
lock the destination account. Either way, the transaction is aborted after
having debited the source account. To keep the transaction atomic (and
thus preserve consistency), you need to undo the debit from the source
account. That way, the failed transaction will have left the system’s state
unchanged. That is one of the two legal outcomes of an atomic transaction:
all or nothing.

Without support from a transaction processing system, failure atomicity
is extremely difficult to ensure. Programmers write a lot of complex and bug-
prone code in attempts to provide failure atomicity on their own. To see
how troublesome it can be, consider two ways to achieve failure atomicity
without a transaction processing system.

One approach is to try to test for all possible causes of failure before
taking any action. For example, test that the destination account exists, and
can be locked, before debiting from the source account. This can lead to poor
modularity. After all, the logical place to check the destination account is in
association with crediting that account. In addition, the advance checking
approach doesn’t cope well with concurrency. What if a concurrent thread
messed with the destination account after it had been checked?

Another approach is to test for each possible failure as it may occur
and provide manual cleanup actions. For example, if a failure occurs while
crediting the destination account, revert the money back into the source
account. The problem here is that in a complicated transaction, many failure
handlers are needed, as shown in Figure [5.9] The handler for the second
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Action 1
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Figure 5.9: Failure atomicity can be ensured by testing for failure at each
step in a process and providing appropriate failure handlers. The failure
handler for each action needs to clean up all prior actions, that is, remove
their effects. This approach does not scale as well as the general undo log
used by transaction processing systems.
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action needs to undo the first action. The handler for the third action needs
to undo actions two and one. The handler for the fourth action needs to
undo actions three, two, and one. In Exercise you can show that
failure handlers must share cleanup code to prevent a quadratic increase in
the amount of code for the transaction. Even if the failure handlers share
cleanup code, manual cleanup actions significantly complicate the structure
of the transaction.

By contrast, systems that support transactions (such as database sys-
tems) make failure atomicity completely transparent to the application pro-
grammer. If a transaction aborts, the system automatically cleans up the
state so that no other transaction will observe any effects from the aborted
transaction. In order to provide this service, the transaction system nor-
mally uses an undo log, as I will now describe.

Conceptually, each transaction has its own undo log, which records the
actions needed to back out of the changes that transaction has made to the
system’s state. Every time the transaction writes a new value into some
stored entity, it also adds an entry to the undo log, showing how the entity
can be restored to its prior state. The simplest way to do this is to record
the old value of the entity.

Suppose & = 5 and transaction 77 asks the transaction processing system
to write an 8 into x. In the prior section, you saw that behind the scenes this
action might do more than just write the 8 into x: it might first acquire an
exclusive lock on z. Now, you learn that the transaction processing system
will do even more behind the scenes: it will also add an entry to 77’s undo
log, showing that x needs to be set back to 5 to undo this step. That entry
in the undo log will list x as the entity in question, and 5 as its prior value.

If a transaction aborts, the transaction processing system will read back
through that transaction’s undo log entries, from the most recent to the
earliest, and carry out each of the reversions listed in the log. Be sure
you understand why the undo log entries need to be processed in reverse
chronological order. In Exercise [5.11 you can give an example where this
maftters.

Notice that undoing write operations involves more writing; to undo
the write of 8 into x, you write 5 back into x. This has an important
consequence for two-phase locking. If a transaction writes an entity, it must
hold the corresponding lock in exclusive mode until the transaction has
finished aborting or committing. Shared-mode locks, for entities that the
transaction only reads, can be dropped earlier, subject to the usual two-
phase rules. However, the exclusive-mode locks need to be retained, because
so long as the possibility of aborting exists, the possibility of more writing
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exists.

I mentioned that conceptually each transaction has its own undo log.
Normal transaction processing systems actually store all the undo logs in
one combined log, with each entry added at the end. In order to efficiently
process the entries from a single transaction in reverse chronological order,
each entry contains a pointer to the previous entry from the same trans-
action. Each transaction keeps a pointer to its latest entry, as shown in
Figure You'll see in Section that durability requires additional
logging; these extra log entries are also mixed into the same combined log
with all the transactions’ undo entries.

5.4 Transaction Durability: Write-Ahead Logging

Adding durability to transactions raises two new issues—one directly and
one indirectly:

1. The direct issue is durability itself. When a transaction commits, all
the data needs to be stored somewhere persistent and made available
again after system restart. (Persistent storage might be flash memory
or a disk drive.)

2. The indirect issue is that failure atomicity now needs more work.
When the system is restarted, it may need to clean up after trans-
actions that were in progress at the time the system crashed and that
had already done some writing to persistent storage.

The simplest way to ensure durability itself is to store all entities in per-
sistent storage; all writing by transactions goes directly into that persistent

T;'s latest undo entry

T ——
next:

T,'s latest undo entry

next:

T,'s previous undo entry |-
next:

Figure 5.10: Rather than having a separate undo log for each transaction,
the undo logs can be combined. In this case, the entries for any one trans-
action are chained together, as shown here, so that they can be efficiently
processed as though in a separate log.
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storage. This is not terribly efficient; consider, for example, the difference
in speed between disk drives and RAM. Therefore, I will explain a more
practical alternative later in this section. First, though, to have a correct
(if inefficient) solution, I need to address failure atomicity.

When a transaction aborts, the undo log allows the system to roll back
any writes the transaction did. If a transaction is in progress when the
system crashes, the transaction should be aborted at system restart time,
so that its partial updating of the system state is not visible. This abortion
upon restart can be done in the usual way, by using the undo log, if four
precautions are taken:

1. The undo log must be stored in persistent storage so that it will be
available when the system is restarted, for use in what is called recovery
processing.

2. Whenever a transaction writes a new value for an entity into persistent
storage, it must first write the undo record into the persistent undo
log, as shown in Figure I previously did not emphasize the order
in which these two writes occur. Now it really matters, because the
system could crash between the first write and the second. Users
cannot risk the possibility that the entity has been written without
the undo record.

3. The undo operation (intended to restore an entity from its new value
to its old value) must be safe to use, even if the entity already has
its old value. In other words, the undo operation must be idempotent.
Idempotency is important if the system crashes after the undo record is
written, but before the entity itself is written. Recovery processing can
still “undo” the write that was never done. In addition, if the system
crashes again in the middle of recovery, you can start it all over again
from the beginning, without harm from repeated undo processing. The
form of undo record that I have shown, which records the entity’s old
value, naturally provides idempotency.

4. The recovery processing must have some way to figure out what trans-
actions were in progress and hence need aborting. The usual way to
do this is to keep all the undo logs in one combined log, which also
includes explicit records any time a transaction commits or aborts.
That way, recovery can read backward through the log, noting the
completed transactions and processing the undo entries that are from
other transactions.
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X:

Undo log:

X:

Undo log: | x was 5

X:

i 8 Dd

Undo log: | x was 5

Figure 5.11: In order to allow crash recovery, the undo log entry must be
made persistent before the write to the underlying object.

Because persistent storage is generally slower than main memory, real
transaction processing systems use a somewhat more sophisticated approach
to reduce the amount of writing to persistent storage. When an entity
is accessed the first time, it is copied into main memory. All reads and
writes happen in main memory, for high performance. Every once in a
while, the transaction system copies the latest version of the entity back
into persistent storage. The system may also occasionally evict an entity
from main memory, if it doesn’t seem active enough to merit the space
allocation. I will address this topic in Chapter [6] because it isn’t particular
to transactions.

Similarly, for performance reasons, log records are initially written into
main memory and only later copied to persistent storage. That way, a large
chunk of the log can be written to persistent storage at one time, which
improves the performance of devices such as disk drives.

Incorporating these performance improvements without changing any-
thing else would wreck atomicity and durability. When the system crashed,
almost any situation would be possible. Committed transactions might
have written their results only to nonpersistent memory, violating durability.
Noncommitted transactions might have written some values into persistent
storage, but not the corresponding undo log entries, violating atomicity. To
protect against these cases, you need to put some additional machinery in
place.
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The simplest approach to restoring correct operation is to enforce three
new rules:

1. No entity may be written back into persistent storage until the corre-
sponding undo log entry has been written into persistent storage.

2. The commit entry in the log must be written to persistent storage
before the commit operation is complete.

3. All entities must be written back into persistent storage before the
commit entry is written to the log.

The first rule ensures that all undo entries needed during recovery are avail-
able at recovery time. The second rule prevents the recovery process from
aborting a transaction that the user saw as committed before the crash. The
third rule ensures that committed transactions are durable.

The first two rules are hard to argue with; taken together, they are called
write-ahead logging (WAL). (Although these WAL rules are typical, some
systems do manage to work with variants of them. The end-of-chapter notes
provide pointers to the literature.) However, the third rule deserves closer
scrutiny.

Durability demands that any updated value a transaction provides for
an entity must be stored somewhere in persistent storage before that trans-
action can commit. However, the third rule seems to suggest a specific
location: the entity must be “written back” into persistent storage, that
is, stored in its usual location from which it was read. This leads to two
questions: is this specific choice of location necessary, and, is it desirable?

When a transaction commits, all its updates to entities must be stored
somewhere persistent. Moreover, if the updates are not stored in the enti-
ties’ usual locations, they must be somewhere that the recovery process can
locate. That way, if the system crashes and restarts, the recovery process
can bring the entities’ usual locations up to date, thereby allowing normal
operation to resume. Because the recovery process does its work by reading
the log, the log seems like an obvious alternative place to store committed
transactions’ updates.

This answers the earlier question of necessity. It is not necessary to
write a transaction’s updates into the main data entities’ persistent storage
before the transaction commits. Instead, the updates can be written to the
log as redo log entries. As long as the redo entries are in the log before the
commitment marker, and all of them are in persistent storage before the
commit operation completes, the system will ensure durability. Just as an
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undo log entry can be as simple as a record of the data entity’s old value, a
redo log entry can be as simple as a copy of the new value.

I still need to address the question of desirability. Is there any advantage
to writing redo log entries into persistent storage, rather than directly up-
dating the modified entities’ primary locations? To answer this, you need to
understand that many systems use disk as the only persistent storage and
that the slowest part of accessing a disk drive is the mechanical movements
needed to reach a particular place on the disk. Therefore, writing one large
block of data to a single location on disk is much faster than writing lots
of smaller pieces of data at individual locations. By using redo log entries,
the commit operation has to wait only for a single large write to disk: all
the new portions of the log (undo, redo, and commit) can get forced out in
a single disk operation. Without the redo log, the commit operation would
get held up waiting for lots of individual writes.

At this point, you have seen most of the mechanisms used by real trans-
action processing systems, at least in simplified overview form. Perhaps the
biggest performance issue I have omitted is the speed of recovery after a
crash. Using the mechanisms I have described thus far, the recovery process
would need to read the entire log, back to when the transaction process-
ing system started running. This is not practical for systems that run a
long time. Therefore, transaction processing systems all incorporate some
mechanism that puts a limit on how much of the log needs to be processed.

These mechanisms are generally referred to as checkpointing, because the
simplest (and historically earliest) approach is to create a checkpoint, that
is, a point at which the main persistent storage is brought to a consistent
state. No log entries prior to the checkpoint need to be retained. More
sophisticated checkpointing mechanisms avoid having to bring the system
into a consistent state, so that normal processing can always continue.

5.5 Additional Transaction Mechanisms

In Sections[5.3]and you learned about the two primary mechanisms used
to support transactions: two-phase locking and logging. In this section, you
will extend your knowledge into two more advanced areas: how isolation
can be reduced in order to increase concurrency (Section and how
multiple transaction participants can be coordinated using the two-phase

commit protocol (Section [5.5.2)).
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5.5.1 Increased Transaction Concurrency: Reduced Isola-
tion

Two-phase locking ensures serializability, but at a price in concurrency, and
hence, throughput. Transactions may be forced to wait for locks. How big
a problem this is depends greatly on the workload mix.

Some systems exclusively process short transactions involving only a
few entities (such as the example of a transfer from one account to another).
Those systems will have no problem with two-phase locking, because a trans-
action will lock only a small portion of the data, and never for long. Thus,
there will be almost no contention.

Other systems exclusively process long-running, read-only transactions
involving most of the entities in the database. For example, mining histori-
cal business data for strategically useful patterns might exhibit this behav-
ior. Here again, two-phase locking will be no problem, because any number
of read-only transactions can coexist using the shared mode of the read-
ers/writers locks.

However, a mix of these two workloads—lots of little updates with some
big analysis—could be deadly. The analysis transactions could keep much
of the database locked for a long time, choking off the flow of updates.
This is particularly troubling, given that the updates are likely the mission-
critical part of the system. (Imagine an airline that can analyze its history
thoroughly but can’t book any new reservations.)

This problem is sufficiently serious that many businesses use two separate
database systems. One, the operational system, handles the mission-critical
short transactions, which may update the data. Periodically (such as each
night), data is transferred from the operational system to a data warehouse.
The warehouse holds historical data, generally not quite up to the present,
but close enough for analysis. Analysts can run arbitrarily long read-only
transactions on the warehouse. They can even directly run ad hoc queries
from an interactive session, something they would never dare do on the
operational system. (Imagine an analyst who types in some queries and
then goes home without typing commit; until the interactive session exceeds
a time limit and aborts, it will continue to hold locks.)

Valuable as this warehousing strategy may be, it avoids only the most
obvious manifestations of a more general problem; it does not provide a
complete solution. No perfect solution exists, but database systems provide
one other partial solution: transaction programmers can choose to sacrifice
serializability in order to attain greater concurrency.

Sacrificing serializability to increase concurrency does not mean the pro-
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grammers are sacrificing correctness for performance. Serializability is a
great simplification for a programmer trying to reason carefully enough
about a program to ensure its correctness. However, careful reasoning is
possible even for nonserializable execution, with enough additional mental
labor. Because such labor is neither free nor immune from error, serializable
execution ought to be the default, with other alternatives only considered
where performance is demonstrably inadequate.

Recall that under two-phase locking, transactions generally hold all locks
until the transaction commits or aborts. Suppose instead the transaction did
this only for exclusive locks (when writing); it would acquire a shared lock
before each read operation and release it immediately after the read. Many
database systems (such as Microsoft SQL Server and IBM DB2) offer this
as an option, called read committed. In fact, contrary to the SQL standard,
read committed is often the default mode for transactions; programmers
need to explicitly request serializability.

Even acquiring a shared lock ever so briefly has some value: it prevents
reading data written by a transaction that is still in progress, because that
transaction will hold the lock in exclusive mode. However, several strange
phenomena are possible with this relaxed isolation, which would not be
possible if serializability were enforced. The most well-known phenomenon
is “nonrepeatable read.” If a transaction reads an entity, and then later
reads the same entity again, it may find that the value has changed. This
can happen if between the two reads another transaction writes the entity
and commits.

Nonrepeatable read is often spoken about as though it were the only
problem arising from relaxed isolation. This is a dangerous misconcep-
tion: a programmer might think that in an application that can tolerate
nonrepeatable reads (for example, one that doesn’t read any entity twice),
serializability is superfluous. This is not true.

Consider, for example, a system with two variables, x and y. Transac-
tion T} reads x’s value and writes it into y. Transaction 75 does the reverse:
it copies y into x. Someone doing both of these transactions would expect
x and y to be equal afterward—either of the transactions would suffice to
achieve that. Yet with short read locks, doing the two transactions concur-
rently could result in swapping x and y’s old values, as shown in Figure[5.12
rather than making the two equal. In Exercise you can come up with
a system history exhibiting this phenomenon.

Other database systems, such as Oracle and PostgreSQL, take a more
radical approach to relaxed isolation, known as multiversion concurrency
control (MVCC'). Each write action stores the new value for an entity in a
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Figure 5.12: If transactions release each read lock as soon as they are done
reading the corresponding object, the execution may not be serializable. For
example, two transactions could swap x and y’s values, as shown here.

different location than the old value. Thus, a read action need not read the
most recent version: it can read an older version. In particular, a transaction
can read all entities (other than those it has written itself) from the version
that was most recently committed when the transaction started. Any writes
done since then by other transactions—whether committed or otherwise—
are completely ignored. No read locks are needed at all. This is known as
snapshot isolation. When a transaction using snapshot isolation obtains a
write lock and the entity being written was modified by some other transac-
tion that committed since the writing transaction started, the write request
is aborted with an error condition. The writing transaction must roll back
and restart.

It should be clear that snapshot isolation provides repeatable reads.
Therefore, some people, forgetting that nonrepeatable reads are only one
symptom of relaxed isolation, think that snapshot isolation suffices for se-
rializability. Regrettably, both Oracle and PostgreSQL foster this belief by
calling their snapshot isolation mode “serializable.” Neither offers true seri-
alizability, even as an option. For example, on either of these systems, one
transaction could copy x to y while another was copying y to x, even at the
highest isolation level.

5.5.2 Coordinated Transaction Participants: Two-Phase Com-
mit

A transaction processing system can be built using the mechanisms I have

described thus far: two-phase locking and a write-ahead log containing undo

and redo entries. However, you need one more mechanism if you want

to be able to coordinate multiple subsystems working together on shared

transactions. That mechanism is the two-phase commit protocol, which
I describe in this section. (Two-phase commit and two-phase locking are
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unrelated, other than that each happens to contain two phases.)

As an example of coordination, a system might include both a message-
queuing system and a relational database. Each uses the mechanisms I have
previously described in order to provide atomic and durable transactions.
However, you would like to be able to have a single transaction that first
dequeues a request message from one queue, then does some database oper-
ations, and finally writes a response message into another queue. All of this
should be atomic and durable, as a unit. For example, if something goes
wrong during database processing, the rollback not only should undo any
database changes, but also should restore the request message to its queue.

Transaction processing systems generally include a module specializing
in this coordination, known as a transaction manager, as well as the various
resource managers, such as message-queuing and database systems. The
managers communicate with one another using the two-phase commit pro-
tocol in order to ensure that all participants agree whether a transaction has
aborted or committed. In particular, if the transaction commits, it must be
durable in each resource manager.

Gray pointed out that the essence of two-phase commit is the same as
a wedding ceremony. First, the officiating party asks all the participants
whether they really want to go ahead with the commitment. After each of
them says “I do,” the officiating party announces that the commitment has
taken place.

In somewhat greater detail, the steps in the two-phase commitment pro-
tocol are as follows, and as shown in Figure for the case of a successful
commitment:

1. When a new transaction begins, it registers with the transaction man-
ager.

2. In return, the transaction manager assigns an identifying transaction
context.

3. Whenever the transaction uses the services of a resource manager, it
presents its transaction context. (If the resource manager subcontracts
to another resource manger, it passes the transaction context along.)

4. When a resource manager sees a new transaction context for the first
time, it registers with the transaction manager as being involved in
that transaction. This is known as joining the transaction.

5. When the transaction wishes to commit, it contacts the transaction
manager.
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Transaction 3

4. join transaction context

6. prepared to commit? (phase 1)

\ 4

Transaction 7. OK to commit
manager

8. commit complete (phase 2) Resource
managers

\ 4

9. acknowledgment

Figure 5.13: The two-phase commit protocol coordinates transaction par-
ticipants, as shown here and enumerated in the accompanying text. This
diagram shows only the case in which all resource managers indicate that it
is OK to commit, and so the transaction is committed.

6. The transaction manager knows all the involved resource managers
because of their earlier join messages. The transaction manager starts
phase one by asking each of those resource managers whether it is
prepared to commit.

7. When a resource manager is asked to prepare to commit, it checks
whether it has any reason not to. (For example, a database system
might check whether any consistency constraints were violated.) If the
resource manager detects a problem, it replies to the transaction man-
ager that the transaction should be aborted. If there is no problem,
the resource manager first makes sure the transaction’s updates are all
stored in persistent storage (for example, in redo log records). Then,
once this is complete, the resource manager indicates to the transac-
tion manager that the transaction can commit, so far as this resource
manager is concerned.

8. The transaction manager waits until it has received replies from all
the resource managers. If the replies indicate unanimous agreement
to commit, the transaction manager logs a commitment record and
notifies all the resource managers, which starts phase two.
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9. When a resource manager hears that the transaction is in phase two
of commitment, it logs its own commit record and drops any exclusive
locks it has been holding for the transaction. Once the transaction is
in phase two, there is no possibility it will abort and need to perform
undo actions. Even if the system crashes and restarts, the transaction
manager will see its own commitment log record and go forward with
phase two.

Each resource manager then sends an acknowledgment to the transac-
tion manager, indicating completion of the phase two activity. When
all of these acknowledgments are received, the transaction manager
logs completion of the commit. That way, after a crash and restart, it
will know not to bother redoing phase two.

On the other hand, if back in phase one the transaction manager hears a
request to abort from any resource manager or is forced to recover after a
crash and finds no commitment record, then it notifies the resource managers
to roll back the transaction, using their undo logs.

5.6 Security and Transactions

Transaction processing systems are often used for an enterprise’s mission-
critical operations. As such, a great deal of thought has gone into security
issues in transaction processing systems. However, many of the issues that
arise in these systems are not actually particular to the transaction mecha-
nism, per se. Here I will focus on security implications that stem from using
atomic transactions.

One security consequence of atomic transactions is salutary. A system
constructed out of atomic transactions is much easier to reason about than
a more general system would be. You saw in Chapter [4] that crackers can
exploit race conditions, which would otherwise almost never happen, in order
to subvert a system’s security design. A similar trick can be played by
forcing a non-atomic operation to fail after doing only some of its actions.
By using atomic transactions, the system’s designer excludes both of these
entire categories of vulnerabilities.

Furthermore, security is enhanced by using a general-purpose transaction
processing infrastructure, rather than trying to achieve atomicity through ad
hoc means. Nothing is more prone to security vulnerabilities than complex
code that is rarely used. You saw that achieving failure atomicity without a
general mechanism, such as the undo log, often involves considerable com-
plex, nonmodular code. (For example, see Exploration Project which
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has you examine some Linux kernel source code.) And yet, this messy, bug-
prone code is never tested under normal circumstances, because it comes into
play only in the case of a failure. As such, bugs in it could go undetected
for years, until some cracker goes looking for them.

By contrast, a general-purpose infrastructure (such as is included in a
reputable database system) has presumably been well tested, for two rea-
sons. First, its correct operation is a central concern for its authors, rather
than peripheral. Second, the exact same infrastructure comes into play
in all situations; for example, undo logs are processed in deadlock recovery,
user-initiated aborts, and other failure situations. As such, testing the mech-
anism in one common situation provides some assurance of correct operation
in other, less common situations.

You have seen that one security guideline regarding transactions is sim-
ple: they should be used. Are there other, less simple and less positive
interactions between transactions and security? Unfortunately, yes. Trans-
actions are a very powerful abstraction mechanism; that is, they hide a
great deal of complexity behind a simple interface. An application pro-
grammer can think in terms of the simple interface and totally ignore the
complex underpinnings—except when those complex underpinnings have se-
curity implications. That is the great danger of any abstraction mechanism,
transactions included: it can blind you to what is really going on. Thus,
another security guideline is to go beyond the abstract view of transactions
and consider the underlying mechanisms discussed in this chapter.

One instance in which you need to think about transactions’ underpin-
nings occurs when you are reasoning about your system’s vulnerability to
denial of service attacks. Transaction processing systems do a great deal
of locking behind the scenes. Generally, they provide not only deadlock
detection, but also timeouts on locks. However, this doesn’t mean that a
subverted transaction couldn’t bring other transactions to their knees. Do
you really want to wait the full timeout period for each lock acquisition?

Worse, the usual way of handling locking problems is to roll back the
involved transactions and then restart them. If the problems are caused
by fluky coincidences, they will almost surely not recur on the second try.
However, if your system is being manipulated by a cracker, might you be put
in the position of repeatedly rolling back and retrying the same transactions?
If so, you not only are making no headway, but also are consuming great
quantities of resources, such as processing time and log space. After how
many retries should you give up?

Even aside from locking and retries, you need to understand your trans-
actions’ consumption of log space and other resources to be able to reason
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about denial of service attacks. Could an attacker trick you into filling up
your log space on disk?

Another pitfall would be to lose track of exactly what degree of isola-
tion your transactions enjoy relative to other concurrent computations. For
example, suppose you have a transaction that temporarily stores some con-
fidential information into a widely readable data entity, but then deletes
the information before committing. (Alternatively, the transaction may
store the information and then abort upon discovering the information is
confidential.) Does this suffice to protect the information from disclosure?
Maybe, maybe not. If your transaction is running in serializable isolation
(that is, with full two-phase locking), and so are all the concurrent computa-
tions, then the information is protected. However, if you allow an adversary
to run transactions that don’t acquire locks (for example, SQL’s “read un-
committed” isolation level), then you have not protected the confidential
information, no matter how serializable your own transaction is and how
careful it is to clean up all the data before committing.

Similarly, suppose your transactions rely on keeping the database consis-
tent (maintaining invariant properties) in order to operate correctly. Specif-
ically, if the database becomes inconsistent, your transactions can be tricked
into violating security policy. Are you safe if all the transactions have been
declared to use the “serializable” isolation level, and adversaries are pre-
vented from introducing additional transactions? Not necessarily. As I
mentioned earlier, if you are using the Oracle or PostgreSQL database sys-
tem, the “serializable” isolation level doesn’t actually provide serializability;
it provides only snapshot isolation. If you don’t understand that, and ex-
actly what snapshot isolation entails, you have no way to reason about the
kind of situations into which a cracker could manipulate your transactions.
Perhaps the cracker could arrange for your transactions to run in a nonseri-
alizable fashion that leaves the database inconsistent in a way that creates
a security vulnerability.

Most transaction processing systems are closed environments, where
crackers cannot easily introduce extra transactions or even analyze the exist-
ing transactions. This makes them somewhat resistant to attack. Perhaps
as a result, the risks mentioned here have generally remained theoretical
to date. No known exploits take advantage of programmers’ confusion be-
tween snapshot isolation and true serializability, for example. Nonetheless,
it is important to remember that abstraction can be dangerous. Unless you
understand what your system is really doing, you will not understand its
vulnerabilities.

One final pitfall for unwary programmers, with possible security impli-
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cations, is that a transaction manager can provide atomicity only for those
actions under its control. For example, throughout this chapter, I have
assumed that transactions don’t do any I/O. Mature, full-featured transac-
tion processing systems also allow controlled I/O from transactions. Until
a transaction commits, all its output is kept impounded. Only upon com-
mit is the output actually produced. (Some systems go so far as to use
special I/O hardware that can be tested after a crash to see whether the
output was produced yet.) In contrast to these full-featured systems, many
programmers build web-accessible applications (in particular) with only a
transactional database as support. In these systems, as in this textbook,
I/0 is not automatically included in the transactional protection. The ap-
plication programmer needs to take responsibility for not printing a valuable
ticket and then allowing the purchase to be aborted, for example.

Exercises

5.1 In the example of deadlock detection and recovery in a database, each
of the two transactions tried to update two account balances, then
commit. Suppose you add another step to the beginning of each trans-
action: immediately before the first update, display the full table, us-
ing select. Other than displaying the table, will this have any impact
on how the scenario plays out? Explain what will happen if the trans-
actions are executed in a system that is enforcing serializability using
two-phase locking. (Note that this cannot be tested using Oracle,
because it uses MVCC, rather than two-phase locking.)

5.2 I introduced serial histories with an example where transaction T}
added 3 to x and y and then transaction T doubled z and y. Write
out the other serial history, in which 75 comes first. Leave the sequence
of steps within each transaction the same as in the text, but change
the values appropriately.

5.3 Prove that the example serializable history is equivalent to the example
serial history by showing the result of each equivalence-preserving swap
step along the way from the serializable history to the serial history.

5.4 For each of the following histories, if the history is serializable, give an
equivalent serial history. Rather than listing all the steps in the serial
history, you can just list the transaction numbers (1 and 2; or 1, 2,
and 3) in the appropriate order. If the history is not serializable, say
S0.
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e1(x), w( z),€2(%),
e3(2), w3(2),e3(2), e3(y), ws(y),es(y), e1(y), wi(y), e1(y)
€1 7r1(x)732(y)ar2(y)7§2(y) )?wl(y)7€1(y)>él(x)v

5.5 Of the serializable histories in Exercise which ones obey the two-
phase locking rules?

5.6 As an example of two-phase locking, page [I78] showed three different
two-phase histories for transaction T3, which reads and writes x and
then reads and writes y. Come up with at least five more histories for
this transaction that also obey the two-phase locking rules.

5.7 Explain why the rightmost phase two impurity of T cannot conflict
with its right-hand neighbor.

5.8 Explain why a pure transaction, T}, with any of its actions occurring
as an impurity within the span of T; must lie entirely within 7}’s phase
one or entirely within 7}’s phase two.

5.9 Some particular collections of transactions may not need two-phase
locking to ensure serializability. However, this is generally a fragile sit-
uation, which can be disturbed by the addition of another transaction—
even one obeying two-phase locking.

(a)

(b)

Give two transaction histories, neither of which obeys the two-
phase locking rules, but which nonetheless always produce a se-
rializable system history, no matter how they are interleaved.

Come up with a third transaction history, this one obeying two-
phase locking, such that when interleaved with the first two, a
nonserializable system history can result.

5.10 I mentioned that providing failure atomicity without an undo log re-
sults in complex code. For example, putting an explicit succession of
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5.14
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cleanup actions into each action’s failure handling code can result in a
quadratic increase in code size. Flesh out the details of this argument
by proving that if Figure [5.9] on page were extended to include n
actions, it would contain ©(n?) cleanup steps.

Give an example of a transaction where it matters that undo log entries
are processed in reverse chronological order.

Suppose you use relaxed-isolation locking rules, where shared locks
are held only for the duration of the read action and then are released
immediately afterward. (Exclusive locks are still held until the end
of the transaction.) Give a system history of two transactions, each
complying with these locking rules, in which one copies x’s value to y
and the other copies y’s value to . Starting with x = 3 and y = 5,
you should wind up with x =5 and y = 3.

Redo Exercise but instead of two-phase locking, assume that the
isolation level known as “read committed” is used and is implemented
with short read locks. Then do the exercise a third time, assuming
snapshot isolation. Only the latter can be tested using Oracle. (Ora-
cle’s read committed level doesn’t use short read locks.) To test snap-
shot isolation using Oracle, start each transaction with the following
command:

set transaction isolation level serializable;

Suppose that when a stored value is increased by 1, an undo record is
written that does not include the old value. Instead, the undo record
indicates that to undo the operation, the value should be decreased by
1. Is this idempotent? What problems might arise for crash recovery?

On page three example histories are given for the transaction 77,
each of which obeys two-phase locking. Subsequently, page lists
“three very simple rules” that suffice to ensure two-phase locking. Do
any of the three example histories obey those simple rules? If so, which
one(s)?

The wording of page [I80]s definitions of “phase one” and “phase two”
(for two-phase locking) assumes that 7} contains at least one unlock
action. Explain why this is a safe assumption, provided that T} con-
tains any actions at all.
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5.17 Suppose 17 writes new values into x and y and 75 reads the values

of both x and y. Is it possible for 75 to see the old value of = but
the new value of y? Answer this question three times: once assuming
two-phase locking, once assuming the “read committed” isolation level
is used and is implemented with short read locks, and once assuming
snapshot isolation. In each case, justify your answer.

Programming Project

5.1 Build a simple, inefficient Java class to support transactions that are

atomic (under both concurrency and failure) but not durable, and
without deadlock detection. The class should provide some state on
which the transactions can operate; for example, it might encapsulate
an array of integers, with put and get operations that the transactions
can use to modify and access slots within the array. The transactions
need to limit themselves to this state, accessed through these opera-
tions, in order to receive the guarantee of atomic execution.

You can use Java’s Threads as the transactions; your class can find out
which one is currently running using Thread.currentThread (). Your
class should take care of automatically acquiring and releasing read-
ers/writers locks (from Programming Project[4.10)), in accordance with
two-phase locking. You will need to keep track of the locks each trans-
action holds and an undo log for each transaction. This per-transaction
information can be stored using a Map or using ThreadLocal objects.

One design option would be to provide three methods used to signal the
start of a transaction and its termination by commitment or abortion.
Another, more object-oriented, option would be to encapsulate each
transaction using an interface analogous to Runnable in the Java API,
with a run method that carries out the whole transaction. If that
method returns, the transaction commits; on the other hand, if the
method throws an exception, the transaction aborts.

As a client application for your class, you could write a program that
has multiple threads transferring money between bank accounts. The
encapsulated array of integers could be used to store account balances,
with the array indexes serving as account numbers. You should design
the collection of concurrent transfers to be deadlock free. However,
you should ensure that there are lots of concurrent transfers and lots
of cases where multiple transfers access the same account. That way,
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correct final balances provide good evidence that your class was suc-
cessful at warding off races. Also, you should include some transactions
that abort after making updates, so as to test the use of undo logs.

Exploration Projects

5.1

5.2

5.3

5.4

5.5

5.6

Work through the examples in Chapter 25 (“Transactions”) of the
J2EFE 1.4 Tutorial.

On a Linux system that uses an ext3fs file system, for which you
have permission to change mount options, experiment with the per-
formance impact of journaling options. In particular, test a write-
intensive workload after mounting the file system with each of the
options data=journal, data=ordered, and data=writeback. These
control how much protection is provided for file data (as opposed to
metadata). With the first, all file operations are atomic and durable.
With the second, a crash may occasionally leave data updated without
the corresponding metadata update. With the third, it is even possible
for metadata to be updated but still be pointing at old data. Write a
report carefully explaining what you did and in which hardware and
software system context you did it, so that someone else could replicate
your results.

Carry out the scenario from Exercise using a relational database
system. You should use two interactive sessions, in each of which you
have given the command set transaction isolation level read
committed. Be sure to end your commands in each session with
commit before you inspect the outcome.

Carry out the same scenario as in the previous project using Ora-
cle or PostgreSQL, with the transaction isolation level set to
serializable.

Try the same scenario as in the previous project, using Microsoft SQL
Server or IBM DB2, with the transaction isolation level set to
serializable. You should find that x and y are not swapped. What
happens instead? Does this depend on how you interleave the com-
mands in the two sessions?

Come up with a plausible scenario where using snapshot isolation
rather than serializability results in a security vulnerability. You needn’t
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show detailed SQL code, just an English description of what the data
would be and what the transactions would do with it. (Some more for-
mality might be helpful, of course.) Explain what an adversary would
need to do in order to exploit the vulnerability.

5.7 The quadratic growth in code size in Exercise stems from the as-
sumption that each action’s failure handler has its own disjoint cleanup
code. This results in lots of repetitions of the same cleanup actions.
One way to keep explicit per-action cleanup code (rather than a gen-
eral undo log) and yet avoid quadratic growth is to share the common
cleanup code, so that each cleanup action only appears once. Fail-
ures later in the transaction just execute more of that shared cleanup
code than failures earlier in the transaction do. An example of this
pattern can be found in the procedure copy_process in the Linux
kernel source file kernel/fork.c. Skim this code (you don’t need
to understand most of it) and write a description of what program-
ming language mechanism it uses to execute the appropriate amount
of cleanup code, based on how late the failure occurs. Can you think
of an alternative programming language mechanism that could serve
the same purpose? (This exercise was written when the kernel was at
version 2.6.0-test11; however, the relevant aspects of this procedure
seem to be stable across quite a few versions.)

Notes

My treatment of transactions barely scratches the surface. If you are in-
terested in transactions, you should read at least one book devoted entirely
to the topic. The best to start with is probably by Bernstein and New-
comer [20]. After that, you can get a more detailed treatment of the un-
derlying principles from Weikum and Vossen [I51] or of the practical details
(with lots of code) from Gray and Reuter [65].

The earliest electronic transaction processing systems are poorly docu-
mented in the open literature; apparently companies regarded techniques for
achieving atomicity and durability as proprietary. (Gray has suggested the
developers merely prioritized code over papers.) Only in the mid- to late
1970s did techniques such as I explain begin showing up in publications;
references [55], [120] 093, [64] still make good reading today. A longer, less
polished work by Gray [61] was quite influential; today, it is primarily of in-
terest to historians, as much of the same material appears in more polished
form in his book with Reuter [65].
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Hérder and Reuter [68] introduced the acronym ACID. In the terminol-
ogy I presented, isolation is subsumed under atomicity. You should be aware
that some other authors instead treat atomicity as meaning only atomicity
in the face of failures. Lampson and Sturgis [93] use unitary to mean atomic
with respect to failures; however, this term does not seem to have caught
on.

The specific software versions used for the examples were Oracle Database
9i, PostgreSQL 7.4, and J2EE 1.4.

I showed how workflow systems can be configured with message queues
connecting the processing stages. A popular alternative is to connect each
processing stage with a centralized process manager, which coordinates the
workflow. For example, upon receiving a message from order processing, the
manager would send messages out to accounts receivable, shipping, and the
customer. The process manager allows centralized monitoring and control.
Process managers are sold as part of Enterprise Application Integration
(EAI) products such as TIBCO’s BusinessWorks.

I mentioned that my definitions of history, equivalence, and serializability
were chosen for simplicity and would not accommodate more sophisticated
concurrency control methods. If you wish to pursue this, the previously
cited book by Weikum and Vossen [151] provides a good foundation. Classic
works on the topic include those by Bernstein and Goodman [18, [19] and
by Stearns and Rosenkrantz [I37]. Several works I will cite with regard to
relaxed isolation are also relevant here.

Two-phase locking seems to have first been published by Eswaran et
al. [55]. That same 1976 paper also brought to the fore a difficult aspect of
serializability in relational databases, which I have glossed over. Normally,
locking is done at the granularity of individual rows in database tables.
Suppose a transaction is operating on all accounts with zero balances. On
the surface, you might think it locks just those rows of the accounts table.
However, what if a concurrent transaction is doing a withdrawal that brings
another account’s balance down to zero? Or inserting a new account with
zero balance? This introduces the problem known as phantoms; a transac-
tion’s assumptions can be invalidated not only by changes to the rows the
transaction has read, but also by the addition of new rows. Eswaran et al.’s
proposed solution, predicate locks, was impractical if taken too literally but
provided the foundation for more practical techniques.

In describing durability and failure atomicity in the face of system crashes,
I differentiated volatile storage from persistent storage. Real systems need
to consider these issues in even greater detail. For example, a system failure
while overwriting a block on disk may result in the disk having neither the
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old nor the new version available. This necessitates precautions, such as
writing two copies of critical blocks. A good starting point for this topic
would be the works cited at the beginning of these notes.

Key papers on snapshot isolation and other relaxations of isolation in-
clude those by Berenson et al. [16]; by Kempster, Stirling, and Thanisch [86];
and by Adya, Liskov, and O’Neil [I]. Historically, the original treatment of
relaxed isolation was by Gray et al. [63].

I attributed the wedding analogy for two-phase commit to Gray. He
seems to have first introduced it in a conference paper [62] and then reused
it in his book with Reuter [65].

Transactions are also being increasingly used in multi-threaded program-
ming as an alternative to the lock-based and lock-free synchronization ap-
proaches illustrated in the previous chapter. In this context, the trans-
actional objects are often as fine-grained as individual memory locations,
leading to the term Transactional Memory (TM). This abstraction can ei-
ther be supported in hardware (Hardware Transactional Memory or HTM)
or in software (Software Transactional Memory or STM). The best survey
of the whole field is the book by Harris, Larus, and Rajwar [69]. Although
the practicality of STM has been questioned [28| [54], it seems promising,
particularly when embedded in a functional programming language such as
Haskell [70] or Clojure.



Chapter 6

Virtual Memory

6.1 Introduction

In Chapters 4| and [5, you have seen that synchronization (including trans-
actions) can control the interactions between concurrent threads. For ex-
ample, synchronization can ensure that only one thread at a time updates
the memory locations holding a shared data structure. Now you will learn
about another form of control, which can provide each thread with its own
private storage, rather than regulating the threads’ access to shared storage.

In this chapter, I will present a mechanism, virtual memory, that can be
used to provide threads with private storage, thereby controlling their in-
teraction. However, virtual memory turns out to be a very general-purpose
abstraction, useful for many goals other than just giving threads some pri-
vacy. Therefore, after using this introductory section to present the basic
concept of virtual memory, I will devote Section to surveying the ap-
plications of virtual memory. Only afterward will I turn to the details of
mechanisms and policies; you'll find the related discussions in Sections
and The chapter concludes with the standard features: security issues
in Section then exercises, programming and exploration projects, and
notes.

The essence of virtual memory is to decouple the addresses that running
programs use to identify objects from the addresses that the memory uses
to identify storage locations. The former are known as wvirtual addresses
and the latter as physical addresses. As background for understanding this
distinction, consider first a highly simplified diagram of a computer system,
without virtual memory, as shown in Figure In this system, the proces-
sor sends an address to the memory whenever it wants to store a value into
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address

Processor Memor
data Y

Figure 6.1: In a system without virtual memory, the processor sends ad-
dresses directly to the memory.

memory or load a value from memory. The data being loaded or stored is
also transferred in the appropriate direction. Each load operation retrieves
the most recent value stored with the specified address. Even though the
processor and memory are using a common set of addresses to communicate,
the role played by addresses is somewhat different from the perspective of
the processor than from the perspective of the memory, as I will now explain.

From the perspective of the processor (and the program the processor
is executing), addresses are a way of differentiating stored objects from one
another. If the processor stores more than one value, and then wishes to
retrieve one of those values, it needs to specify which one should be retrieved.
Hence, it uses addresses essentially as names. Just as an executive might tell
a clerk to “file this under ‘widget suppliers’” and then later ask the clerk
to “get me that document we filed under ‘widget suppliers’,” the processor
tells the memory to store a value with a particular address and then later
loads from that address. Addresses used by executing programs to refer to
objects are known as virtual addresses.

Of course, virtual addresses are not arbitrary names; each virtual address
is a number. The processor may make use of this to give a group of related
objects related names, so that it can easily compute the name of any object
in the group. The simplest example of this kind of grouping of related
objects is an array. All the array elements are stored at consecutive virtual
addresses. That allows the virtual address of any individual element to
be computed from the base virtual address of the array and the element’s
position within the array.

From the memory’s perspective, addresses are not identifying names
for objects, but rather are spatial locations of storage cells. The memory
uses addresses to determine which cells to steer the data into or out of.
Addresses used by the memory to specify storage locations are known as
physical addresses. Figure shows the processor’s and memory’s views
of addresses in a system like that shown in Figure where the physical
addresses come directly from the virtual addresses, and so are numerically
equal.
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Processor Memory
0=A
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Figure 6.2: In a system without virtual memory, virtual addresses (the pro-
cessor’s names for objects) equal physical addresses (the memory’s storage
locations).

The difference between the processor’s and memory’s perspectives be-
comes apparent when you consider that the processor may be dividing its
time between multiple computational processes. Sometimes the processes
will each need a private object, yet the natural name to use will be the
same in more than one process. Figure [6.3] shows how this necessitates us-
ing different addresses in the processor and the memory. That is, virtual
addresses can no longer be equal to physical addresses. To make this work,
general-purpose computers are structured as shown in Figure Program
execution within the processor works entirely in terms of virtual addresses.
However, when a load or store operation is executed, the processor sends the
virtual address to an intermediary, the memory management unit (MMU).
The MMU translates the virtual address into a corresponding physical ad-
dress, which it sends to the memory.

In Figure [6.3] each process uses the virtual address 0 as a name for its
own triangle. This is a simplified model of how more complicated objects
are referenced by real processes. Consider next a more realistic example of
why each process might use the same virtual addresses for its own objects.

Processor Memory
Process A Process B
0=A 0= A

1=4
2=[

1= &
2=1

0O 1 2 3 4 5§
AEIEINCIL]

Figure 6.3: When two processes each use the same virtual addresses as
names for their own objects, the virtual addresses cannot equal the physical
addresses, because each process’s objects need to be stored separately.
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virtual physical
address -MMU address
Processor Memory
data

Figure 6.4: The memory management unit (MMU) translates the processor’s
virtual addresses into the memory’s physical addresses.

Suppose several copies of the same spreadsheet program are running. Each
copy will naturally want to refer to “the spreadsheet,” but it should be
a different spreadsheet object in each process. Even if each process uses
a numerical name (that is, a virtual address), it would be natural for all
running instances of the spreadsheet program to use the same address; after
all, they are running the same code. Yet from the memory’s perspective, the
different processes’ objects need to be stored separately—hence, at different
physical addresses.

The same need for private names arises, if not quite so strongly, even
if the concurrent processes are running different programs. Although in
principle each application program could use different names (that is, virtual
addresses) from all other programs, this requires a rather unwieldy amount
of coordination.

Even for shared objects, addresses as names behave somewhat differently
from addresses as locations. Suppose two processes are communicating via a
shared bounded buffer; one is the producer, while the other is the consumer.
From the perspective of one process, the buffer is the “output channel,”
whereas for the other process, it is the “input channel.” Each process may
have its own name for the object; yet, the memory still needs to store the
object in one location. This holds true as well if the names used by the
processes are numerical virtual addresses.

Thus, once again, virtual addresses and physical addresses should not be
forced to be equal; it should be possible for two processes to use the same
virtual address to refer to different physical addresses or to use different
virtual addresses to refer to the same physical address.

You have seen that the MMU maps virtual addresses to physical ad-
dresses. However, I have not yet discussed the nature of this mapping. So
far as anything up to this point goes, the mapping could be as simple as
computing each physical address as twice the virtual address. However,
that would not yield the very general mechanism known as virtual memory.
Instead, virtual memory must have the following additional properties:
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e The function that maps virtual addresses to physical addresses is rep-
resented by a table, rather than by a computational rule (such as
doubling). That way, the mapping can be much more general.

e However, to keep its size manageable, the table does not independently
list a physical address for each virtual address. Instead, the virtual
addresses are grouped together into blocks known as pages, and the
table shows for each page of virtual addresses the corresponding page
frame of physical addresses. TI'll explain this in greater detail in Sec-
tion In that same section, I also briefly consider an alternative,
segmentation.

e The contents of the table are controlled by the operating system. This
includes both incremental adjustments to the table (for purposes you
will see in Section and wholesale changes of the table when switch-
ing between threads. The latter allows each thread to have its own
private virtual address space, in which case, the threads belong to
different processes, as explained in Section

e The table need not contain a physical address translation for every
page of virtual addresses; in effect, some entries can be left blank.
These undefined virtual addresses are illegal for the processor to use.
If the processor generates an illegal address, the MMU interrupts the
processor, transferring control to the operating system. This interrupt
is known as a page fault. This mechanism serves not only to limit the
usable addresses but also to allow address translations to be inserted
into the table only when needed. By creating address translations
in this demand-driven fashion, many applications of virtual memory
arrange to move data only when necessary, thereby improving perfor-
mance.

e As a refinement of the notion of illegal addresses, some entries in the
table may be marked as legal for use, but only in specific ways. Most
commonly, it may be legal to read from some particular page of virtual
addresses but not to write into that page. The main purpose this serves
is to allow trouble-free sharing of memory between processes.

In summary, then, virtual memory consists of an operating system—
defined table of mappings from virtual addresses to physical addresses (at
the granularity of pages), with the opportunity for intervention by the op-
erating system on accesses that the table shows to be illegal. You should be
able to see that this is a very flexible mechanism. The operating system can
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switch between multiple views of the physical memory. Parts of physical
memory may be completely invisible in some views, because no virtual ad-
dresses map to those physical addresses. Other parts may be visible in more
than one view, but appearing at different virtual addresses. Moreover, the
mappings between virtual and physical addresses need not be established in
advance. By marking pages as illegal to access, and then making them avail-
able when an interrupt indicates that they are first accessed, the operating
system can provide mappings on a demand-driven basis. In Section[6.2] you
will see several uses to which this general mechanism can be put.

6.2 Uses for Virtual Memory

This section contains a catalog of uses for virtual memory, one per subsec-
tion. The applications of virtual memory enumerated are all in everyday use
in most general-purpose operating systems. A comprehensive list would be
much longer and would include some applications that have thus far been
limited to research systems or other esoteric settings.

6.2.1 Private Storage

The introductory section of this chapter has already explained that each
computation running on a computer may want to have its own private stor-
age, independent of the other computations that happen to be running on
the same computer. This goal of private storage can be further elaborated
into two subgoals:

e Each computation should be able to use whatever virtual addresses it
finds most convenient for its objects, without needing to avoid using
the same address as some other computation.

e Each computation’s objects should be protected from accidental (or
malicious) access by other computations.

Both subgoals—independent allocation and protection—can be achieved by
giving the computations their own virtual memory mappings. This forms
the core of the process concept.

A process is a group of one or more threads with an associated protection
context. I will introduce processes more fully in Chapter [/} In particular,
you will learn that the phrase “protection context” is intentionally broad,
including such protection features as file access permissions, which you will
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study in Chapters|7|and |8} For now, I will focus on one particularly impor-
tant part of a process’s context: the mapping of virtual addresses to physical
addresses. In other words, for the purposes of this chapter, a process is a
group of threads that share a virtual address space.

As I will describe in Chapter [7] the computer hardware and operating
system software collaborate to achieve protection by preventing any software
outside the operating system from updating the MMU’s address mapping.
Thus, each process is restricted to accessing only those physical memory
locations that the operating system has allocated as page frames for that
process’s pages. Assuming that the operating system allocates different
processes disjoint portions of physical memory, the processes will have no
ability to interfere with one another. The physical memory areas for the
processes need only be disjoint at each moment in time; the processes can
take turns using the same physical memory.

This protection model, in which processes are given separate virtual
address spaces, is the mainstream approach today; for the purposes of the
present chapter, I will take it for granted. In Chapter [7] I will also explore
alternatives that allow all processes to share a single address space and yet
remain protected from one another.

6.2.2 Controlled Sharing

Although the norm is for processes to use disjoint storage, sometimes the
operating system will map a limited portion of memory into more than one
process’s address space. This limited sharing may be a way for the processes
to communicate, or it may simply be a way to reduce memory consumption
and the time needed to initialize memory. Regardless of the motivation, the
shared physical memory can occupy a different range of virtual addresses
in each process. (If this flexibility is exercised, the shared memory should
not be used to store pointer-based structures, such as linked lists, because
pointers are represented as virtual addresses.)

The simplest example of memory-conserving sharing occurs when multi-
ple processes are running the same program. Normally, each process divides
its virtual address space into two regions:

e A read-only region holds the machine language instructions of the
program, as well as any read-only data the program contains, such
as the character strings printed for error messages. This region is
conventionally called the text of the program.

e A read/write region holds the rest of the process’s data. (Many sys-
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tems actually use two read/write regions, one for the stack and one
for other data.)

All processes running the same program can share the same text. The
operating system maps the text into each process’s virtual memory address
space, with the protection bits in the MMU set to enforce read-only access.
That way, the shared text does not accidentally become a communication
channel.

Modern programs make use of large libraries of supporting code. For
example, there is a great deal of code related to graphical user interfaces that
can be shared among quite different programs, such as a web browser and
a spreadsheet. Therefore, operating systems allow processes to share these
libraries with read-only protection, just as for main programs. Microsoft
refers to shared libraries as dynamic-link libraries (DLLs).

Figure illustrates how processes can share in read-only form both
program text and the text of DLLs. In this figure, processes A and B are
running program 1, which uses DLLs 1 and 2. Processes C and D are
running program 2, which uses DLLs 1 and 3. Each process is shown as
encompassing the appropriate program text, DLLs, and writable data area.
In other words, each process encompasses those areas mapped into its virtual
address space.

From the operating system’s perspective, the simplest way to support
interprocess communication is to map some physical memory into two pro-
cesses’ virtual address spaces with full read/write permissions. Then the
processes can communicate freely; each writes into the shared memory and
reads what the other one writes. Figure illustrates this sharing of a
writable area of memory for communication.

Simple as this may be for the operating system, it is anything but simple
for the application programmers. They need to include mutexes, readers-
writers locks, or some similar synchronization structure in the shared mem-
ory, and they need to take scrupulous care to use those locks. Otherwise,
the communicating processes will exhibit races, which are difficult to debug.

Therefore, some operating systems (such as Mac OS X) use virtual mem-
ory to support a more structured form of communication, known as message
passing, in which one process writes a message into a block of memory and
then asks the operating system to send the message to the other process.
The receiving process seems to get a copy of the sent message. For small
messages, the operating system may literally copy the message from one pro-
cess’s memory to the other’s. For efficiency, though, large messages are not
actually copied. Instead, the operating system updates the receiver’s virtual
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Figure 6.5: The address space of a process includes the text of the program
the process is running, the text of any DLLs used by that program, and a
writable storage area for data. Because processes A and B are both running
program 1, which uses DLLs 1 and 2, their address spaces share these com-
ponents. Processes C and D are running program 2, which uses DLLs 1 and
3. Because both programs use DLL 1, all four processes share it.

Communication
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Process B’s
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Process A’s
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Figure 6.6: Two processes can communicate by sharing a writable storage
area.
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memory map to point at the same physical memory as the sender’s message;
thus, sender and receiver both have access to the message, without it being
copied. To maintain the ease of debugging that comes from message pass-
ing, the operating system marks the page as read-only for both the sender
and the receiver. Thus, they cannot engage in any nasty races. Because
the sender composes the message before invoking the operating system, the
read-only protection is not yet in place during message composition and so
does not stand in the way.

As a final refinement to message passing by read-only sharing, systems
such as Mac OS X offer copy on write (COW). If either process tries to write
into the shared page, the MMU will use an interrupt to transfer control to
the operating system. The operating system can then make a copy of the
page, so that the sender and receiver now have their own individual copies,
which can be writable. The operating system resumes the process that
was trying to write, allowing it to now succeed. This provides the complete
illusion that the page was copied at the time the message was sent, as shown
in Figure The advantage is that if the processes do not write into most
message pages, most of the copying is avoided.

6.2.3 Flexible Memory Allocation

The operating system needs to divide the computer’s memory among the
various processes, as well as retain some for its own use. At first glance,
this memory allocation problem doesn’t seem too difficult. If one process
needs 8 megabytes (MB) and another needs 10, the operating system could
allocate the first 8 MB of the memory (with the lowest physical addresses)
to the first process and the next 10 MB to the second. However, this kind
of contiguous allocation runs into two difficulties.

The first problem with contiguous allocation is that the amount of mem-
ory that each process requires may grow and shrink as the program runs. If
the first process is immediately followed in memory by the second process,
what happens if the first process needs more space?

The second problem with contiguous allocation is that processes exit, and
new processes (with different sizes) are started. Suppose you have 512 MB
of memory available and three processes running, of sizes 128 MB, 256 MB,
and 128 MB. Now suppose the first and third processes terminate, freeing
up their 128-MB chunks of memory. Suppose a 256-MB process now starts
running. There is enough memory available, but not all in one contiguous
chunk, as illustrated in Figure This situation is known as external frag-
mentation. I will discuss external fragmentation more carefully in Chapter
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Figure 6.7: To use copy on write (COW) message passing, process A writes a
message into part of its private memory (Step 1) and then asks the operating
system to map the memory containing the message into process B’s address
space as well (Step 2). Neither process
shared area. If either violates this restriction, the operating system copies
the affected page, gives each process write permission for its own copy, and
allows the write operation to proceed (Step 3). The net effect is the same
as if the message were copied when it was sent, but the copying is avoided
if neither process writes into the shared area.

has permission to write into the
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128 MB 256 MB 128 MB
r_/_\ r \ r_/%
Process A Process B Process C
128 MB 256 MB 128 MB
r_/_\ r A} r_/%
Process B
256 MB
Where does Process D go?

Figure 6.8: Contiguous allocation leads to external fragmentation. In this
example, there is no contiguous 256-MB space available for process D, even
though the termination of processes A and C has freed up a total of 256 MB.

because contiguous allocation is important for disk space. (I will also define
the contrasting term, internal fragmentation, in that same chapter.)
Because all modern general-purpose systems have virtual memory, these
contiguous allocation difficulties are a non-issue for main memory. The op-
erating system can allocate any available physical page frames to a process,
independent of where they are located in memory. For example, the co-
nundrum of Figure could be solved as shown in Figure In a more
realistic setting, it would be surprising for the pattern of physical memory
allocation to display even this degree of contiguity. However, the virtual
addresses can be contiguous even if the physical addresses are scattered all

128 MB 256 MB 128 MB
Process D e — Process D
first half second half

Figure 6.9: With virtual memory, the physical memory allocated to a process
need not be contiguous, so process D can be accommodated even without
sufficient memory in any one place.
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over the memory.

6.2.4 Sparse Address Spaces

Just as virtual memory provides the operating system with flexibility in
allocating physical memory space, it provides each application program (or
process) with flexibility in allocating virtual address space. A process can
use whatever addresses make sense for its data structures, even if there are
large gaps between them. This provides flexibility for the compiler and
runtime environment, which assign addresses to the data structures.

Suppose, for example, that a process has three data structures (S1, S2,
and S3) that it needs to store. Each needs to be allocated in a contiguous
range of addresses, and each needs to be able to grow at its upper end. The
picture might look like this, with addresses in megabytes:

’ S1 | free | S2 | free | S3 | free
0 2 6 8 12 14 18

In this example, only one third of the 18-MB address range is actually occu-
pied. If you wanted to allow each structure to grow more, you would have to
position them further apart and wind up with an even lower percentage of
occupancy. Many real processes span an address range of several gigabytes
without using anywhere near that much storage. (Typically, this is done
to allow one region to grow up from the bottom of the address space and
another to grow down from the top.)

In order to allow processes to use this kind of sparse address space with-
out wastefully occupying a corresponding amount of physical memory, the
operating system simply doesn’t provide physical address mappings for vir-
tual addresses in the gaps.

6.2.5 Persistence

Any general-purpose operating system must provide some way for users
to retain important data even if the system is shut down and restarted.
Most commonly, the data is kept in files, although other kinds of persistent
objects can be used. The persistent objects are normally stored on disk. For
example, as I write this book, I am storing it in files on disk. That way, I
don’t have to retype the whole book every time the computer is rebooted.
I will consider persistence in more detail in Chapter 8} for now, the only
question is how it relates to virtual memory.
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When a process needs to access a file (or other persistent object), it
can ask the operating system to map the file into its address space. The
operating system doesn’t actually have to read the whole file into memory.
Instead, it can do the reading on a demand-driven basis. Whenever the
process accesses a particular page of the file for the first time, the MMU
signals a page fault. The operating system can respond by reading that page
of the file into memory, updating the mapping information, and resuming
the process. (For efficiency reasons, the operating system might choose to
fetch additional pages at the same time, on the assumption they are likely
to be needed soon. I discuss this possibility in Section )

If the process writes into any page that is part of a mapped file, the
operating system must remember to write the page back to disk, in order
to achieve persistence. For efficiency, the operating system should not write
back pages that have not been modified since they were last written back
or since they were read in. This implies the operating system needs to
know which pages have been modified and hence are not up to date on disk.
(These are called dirty pages.)

One way to keep track of dirty pages, using only techniques I have already
discussed, is by initially marking all pages read-only. That way, the MMU
will generate an interrupt on the first attempt to write into a clean page.
The operating system can then make the page writable, add it to a list
of dirty pages, and allow the operation to continue. When the operating
system makes the page clean again, by writing it to disk, it can again mark
the page read-only.

Because keeping track of dirty pages is such a common requirement and
would be rather inefficient using the approach just described, MMUs gen-
erally provide a more direct approach. In this approach, the MMU keeps a
dirty bit for each page. Any write into the page causes the hardware to set
the dirty bit without needing operating system intervention. The operating
system can later read the dirty bits and reset them. (The Intel Itanium
architecture contains a compromise: the operating system sets the dirty
bits, but with some hardware support. This provides the flexibility of the
software approach without incurring so large a performance cost.)

6.2.6 Demand-Driven Program Loading

One particularly important case in which a file gets mapped into memory is
running a program. Each executable program is ordinarily stored as a file
on disk. Conceptually, running a program consists of reading the program
into memory from disk and then jumping to the first instruction.
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However, many programs are huge and contain parts that may not al-
ways be used. For example, error handling routines will get used only if
the corresponding errors occur. In addition, programs often support more
features and optional modes than any one user will ever need. Thus, reading
in the whole program is quite inefficient.

Even in the rare case that the whole program gets used, an interactive
user might prefer several short pauses for disk access to one long one. In
particular, reading in the whole program initially means that the program
will be slow to start, which is frustrating. By reading in the program incre-
mentally, the operating system can start it quickly at the expense of brief
pauses during operation. If each of those pauses is only a few tens of mil-
liseconds in duration and occurs at the time of a user interaction, each will
be below the threshold of human perception.

In summary, operating system designers have two reasons to use virtual
memory techniques to read in each program on a demand-driven basis: in
order to avoid reading unused portions and in order to quickly start the
program’s execution. As with more general persistent storage, each page
fault causes the operating system to read in more of the program.

One result of demand-driven program loading is that application pro-
grammers can make their programs start up more quickly by grouping all
the necessary code together on a few pages. Of course, laying out the pro-
gram text is really not a job for the human application programmer, but
for the compiler and linker. Nonetheless, the programmer may be able to
provide some guidance to these tools.

6.2.7 Efficient Zero Filling

For security reasons, as well as for ease of debugging, the operating system
should never let a process read from any memory location that contains a
value left behind by some other process that previously used the memory.
Thus, any memory not occupied by a persistent object should be cleared
out by the operating system before a new process accesses it.

Even this seemingly mundane job—filling a region of memory with zeros—
benefits from virtual memory. The operating system can fill an arbitrarily
large amount of virtual address space with zeros using only a single zeroed-
out page frame of physical memory. All it needs to do is map all the virtual
pages to the same physical page frame and mark them as read-only.

In itself, this technique of sharing a page frame of zeros doesn’t address
the situation where a process writes into one of its zeroed pages. However,
that situation can be handled using a variant of the COW technique men-
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tioned in Section When the MMU interrupts the processor due to a
write into the read-only page of zeros, the operating system can update the
mapping for that one page to refer to a separate read/write page frame of
zeros and then resume the process.

If it followed the COW principle literally, the operating system would
copy the read-only page frame of zeros to produce the separate, writable page
frame of zeros. However, the operating system can run faster by directly
writing zeros into the new page frame without needing to copy them out
of the read-only page frame. In fact, there is no need to do the zero filling
only on demand. Instead, the operating system can keep some spare page
frames of zeros around, replenishing the stock during idle time. That way,
when a page fault occurs from writing into a read-only page of zeros, the
operating system can simply adjust the address map to refer to one of the
spare prezeroed page frames and then make it writable.

When the operating system proactively fills spare page frames with zeros
during idle time, it should bypass the processor’s normal cache memory and
write directly into main memory. Otherwise, zero filling can seriously hurt
performance by displacing valuable data from the cache.

6.2.8 Substituting Disk Storage for RAM

In explaining the application of virtual memory to persistence, I showed
that the operating system can read accessed pages into memory from disk
and can write dirty pages back out to disk. The reason for doing so is
that disk storage has different properties from main semiconductor memory
(RAM). In the case of persistence, the relevant difference is that disk storage
is nonvolatile; that is, it retains its contents without power. However, disk
differs from RAM in other regards as well. In particular, it is a couple
orders of magnitude cheaper per gigabyte. This motivates another use of
virtual memory, where the goal is to simulate having lots of RAM using
less-expensive disk space. Of course, disk is also five orders of magnitude
slower than RAM, so this approach is not without its pitfalls.

Many processes have long periods when they are not actively running.
For example, on a desktop system, a user may have several applications
in different windows—a word processor, a web browser, a mail reader, a
spreadsheet—but focus attention on only one of them for minutes or hours
at a time, leaving the others idle. Similarly, within a process, there may be
parts that remain inactive. A spreadsheet user might look at the online help
once, and then not again during several days of spreadsheet use.

This phenomenon of inactivity provides an opportunity to capitalize on
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inexpensive disk storage while still retaining most of the performance of
fast semiconductor memory. The computer system needs to have enough
RAM to hold the working set—the active portions of all active processes.
Otherwise, the performance will be intolerably slow, because of disk accesses
made on a routine basis. However, the computer need not have enough RAM
for the entire storage needs of all the processes: the inactive portions can be
shuffled off to disk, to be paged back in when and if they again become active.
This will incur some delays for disk access when the mix of activity changes,
such as when a user sets the word processor aside and uses a spreadsheet for
the first time in days. However, once the new working set of active pages is
back in RAM, the computer will again be as responsive as ever.

Much of the history of virtual memory focuses on this one application,
dating back to the invention of virtual memory in the early 1960s. (At that
time, the two memories were magnetic cores and magnetic drum, rather than
semiconductor RAM and magnetic disk.) Even though this kind of paging
to disk has become only one of many roles played by virtual memory, I will
still pay it considerable attention. In particular, some of the most interesting
policy questions arise only for this application of virtual memory. When the
operating system needs to free up space in overcrowded RAM, it needs
to guess which pages are unlikely to be accessed soon. I will come back
to this topic (so-called replacement policies) after first considering other
questions of mechanism and policy that apply across the full spectrum of
virtual memory applications.

6.3 Mechanisms for Virtual Memory

Address mapping needs to be flexible, yet efficient. As I mentioned in Sec-
tion [6.1] this means that the mapping function is stored in an explicit table,
but at the granularity of pages rather than individual bytes or words. Many
systems today use fixed-size pages, perhaps with a few exceptions for the
operating system itself or hardware access, though research suggests that
more general mixing of page sizes can be beneficial. (As explained in the
notes, Linux has moved in this direction.)

Typical page sizes have grown over the decades, for reasons you can
explore in Exercises and today, the most common is 4 kilobytes
(KB). Each page of virtual memory and each page frame of physical memory
is this size, and each starts at an address that is a multiple of the page size.
For example, with 4-KB pages, the first page (or page frame) has address 0,
the next has address 4096, then 8192, and so forth.
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Each page of virtual memory address space maps to an underlying page
frame of physical memory or to none. For example, Figure [6.10| shows
one possible mapping, on a system with unrealistically few pages and page
frames. The numbers next to the boxes are page numbers and page frame
numbers. The starting addresses are these numbers multiplied by the page
size. At the top of this figure, you can see that page 0 is stored in page
frame 1. If the page size is 4 KB, this means that virtual address 0 trans-
lates to physical address 4096, virtual address 100 translates to physical
address 4196, and so forth. The virtual address of the last 4-byte word in
page 0, 4092, translates to the physical address of the last word in page
frame 1, 8188. Up until this point, all physical addresses were found by
adding 4096 to the virtual address. However, the very next virtual address,
4096, translates to physical address 0, because it starts a new page, which
is mapped differently. Note also that page frame 2 is currently not holding
any page, and that pages 2-5 and page 7 have no translation available. In
Exercise[6.5], you can gain experience working with this translation of virtual
addresses into physical addresses by translating the addresses for page 6.

Of course, a realistic computer system will have many more page frames
of physical memory and pages of virtual address space. Often there are tens
or hundreds of thousands of page frames and at least hundreds of thousands
of pages. As a result, operating system designers need to think carefully
about the data structure used to store the table that maps virtual page
numbers to physical page frame numbers. Sections through will
be devoted to presenting three alternative structures that are in current use
for page tables: linear, multilevel, and hashed. (Other alternatives that have
fallen out of favor, or have not yet been deployed, are briefly mentioned in
the end-of-chapter notes.)

Whatever data structure the operating system uses for its page table,
it will need to communicate the mapping information to the hardware’s
MMU, which actually performs the mapping. The nature of this soft-
ware/hardware interface constrains the page table design and also provides
important context for comparing the performance of alternative page table
structures. Therefore, in Section I will explain the two forms the
software/hardware interface can take.

Finally, Section [6.3.5] provides a brief look at segmentation, which was
historically important both as an alternative to paging and as an adjunct to
it.
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Figure 6.10: In this example mapping of eight pages to four page frames,
page 0 has been allocated page frame 1, page 1 has been allocated page
frame 0, and page 6 has been allocated page frame 3. The Xs indicate that
no page frame is assigned to hold pages 2-5 or page 7. Page frame 2 is
unused.

6.3.1 Software/Hardware Interface

You have seen that the operating system stores some form of page table data
structure in memory, showing which physical memory page frame (if any)
holds each virtual memory page. Although I will present several possible
page table structures shortly, the most important design issue applies equally
to all of them: the page table should almost never be used.

Performance considerations explain why such an important data struc-
ture should be nearly useless (in the literal sense). Every single memory
access performed by the processor generates a virtual address that needs
translation to a physical address. Naively, this would mean that every sin-
gle memory access from the processor requires a lookup operation in the
page table. Performing that lookup operation would require at least one
more memory access, even if the page table were represented very efficiently.
Thus, the number of memory accesses would at least double: for each real
access, there would be one page table access. Because memory performance
is often the bottleneck in modern computer systems, this means that virtual
memory might well make programs run half as fast—unless the page table
lookup can be mostly avoided. Luckily, it can.

The virtual addresses accessed by realistic software are not random; in-
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stead, they exhibit both temporal locality and spatial locality. That is, ad-
dresses that are accessed once are likely to be accessed again before long,
and nearby addresses are also likely to be accessed soon. Because a nearby
address is likely to be on the same page, both kinds of locality wind up
creating temporal locality when considered at the level of whole pages. If a
page is accessed, chances are good that the same page will be accessed again
soon, whether for the same address or another.

The MMU takes advantage of this locality by keeping a quickly accessible
copy of a modest number of recently used virtual-to-physical translations.
That is, it stores a limited number of pairs, each with one page number and
the corresponding page frame number. This collection of pairs is called the
translation lookaside buffer (TLB). Most memory accesses will refer to page
numbers present in the TLB, and so the MMU will be able to produce the
corresponding page frame number without needing to access the page table.
This happy circumstance is known as a TLB hit; the less fortunate case,
where the TLB does not contain the needed translation, is a TLB miss.

The TLB is one of the most performance-critical components of a mod-
ern microprocessor. In order for the system to have a fast clock cycle time
and perform well on small benchmarks, the TLB must be very quickly acces-
sible. In order for the system’s performance not to fall off sharply on larger
workloads, the TLB must be reasonably large (perhaps hundreds of entries),
so that it can still prevent most page table accesses. Unfortunately, these
two goals are in conflict with one another: chip designers know how to make
lookup tables large or fast, but not both. Coping as well as possible with
this dilemma requires cooperation from the designers of hardware, operating
system, and application software:

e The hardware designers ameliorate the problem by including two TLBs,
one for instruction fetches and one for data loads and stores. That way,
these two categories of memory access don’t need to compete for the
same TLB.

e The hardware designers may further ameliorate the problem by in-
cluding a hierarchy of TLBs, analogous to the cache hierarchy. A
small, fast level-one (L1) TLB makes most accesses fast, while a larger,
slower level-two (L2) TLB ensures that the page table won’t need
to be accessed every time the L1 TLB misses. As an example, the
AMD Opteron microprocessor contains 40-entry L1 instruction and
data TLBs, and it also contains 512-entry L2 instruction and data
TLBs.
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e The hardware designers also give the operating system designers some
tools for reducing the demand for TLB entries. For example, if dif-
ferent TLB entries can provide mappings for pages of varying sizes,
the operating system will be able to map large, contiguously allocated
structures with fewer TLB entries, while still retaining flexible alloca-
tion for the rest of virtual memory.

e The operating system designers need to use tools such as variable
page size to reduce TLB entry consumption. At a minimum, even if
all application processes use small pages (4 KB), the operating system
itself can use larger pages. Similarly, a video frame buffer of many
consecutive megabytes needn’t be carved up into 4-KB chunks. As
a secondary benefit, using larger pages can reduce the size of page
tables. In many cases, smaller page tables are also quicker to access.

e More fundamentally, all operating system design decisions need to be
made with an eye to how they will affect TLB pressure, because this
is such a critical performance factor. Omne obvious example is the
normal page size. Another, less obvious, example is the size of the
scheduler’s time slices: switching processes frequently will increase
TLB pressure and thereby hurt performance, even if the TLB doesn’t
need to be flushed at every process switch. (I will take up that latter
issue shortly.)

e The application programmers also have a role to play. Programs that
exhibit strong locality of reference will perform much better, not only
because of the cache hierarchy, but also because of the TLB. The per-
formance drop-off when your program exceeds the TLB’s capacity is
generally quite precipitous. Some data structures are inherently more
TLB-friendly than others. For example, a large, sparsely occupied ta-
ble may perform much worse than a smaller, more densely occupied
table. In this regard, theoretical analyses of algorithms may be mis-
leading, if they assume all memory operations take a constant amount
of time.

At this point, you have seen that each computer system uses two different
representations of virtual memory mappings: a page table and a TLB. The
page table is a comprehensive but slow representation, whereas the TLB
is a selective but fast representation. You still need to learn how entries
from the page table get loaded into the TLB. This leads to the topic of the
software/hardware interface.
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In general, the MMU loads page table entries into the TLB on a demand-
driven basis. That is, when a memory access results in a TLB miss, the
MMU loads the relevant translation into the TLB from the page table, so
that future accesses to the same page can be TLB hits. The key difference
between computer architectures is whether the MMU does this TLB loading
autonomously, or whether it does it with lots of help from operating system
software running on the processor.

In many architectures, the MMU contains hardware, known as a page
table walker, that can do the page table lookup operation without software
intervention. In this case, the operating system must maintain the page
table in a fixed format that the hardware understands. For example, on an
TA-32 processor (such as the Pentium 4), the operating system has no other
realistic option than to use a multilevel page table, because the hardware
page table walker expects this format. The software/hardware interface
consists largely of a single register that contains the starting address of
the page table. The operating system just loads this register and lets the
hardware deal with loading individual TLB entries. Of course, there are
some additional complications. For example, if the operating system stores
updated mapping information into the page table, it needs to flush obsolete
entries from the TLB.

In other processors, the hardware has no specialized access to the page
table. When the TLB misses, the hardware transfers control to the operating
system using an interrupt. The operating system software looks up the
missing address translation in the page table, loads the translation into the
TLB using a special instruction, and resumes normal execution. Because
the operating system does the page table lookup, it can use whatever data
structure its designer wishes. The lookup operation is done not with a special
hardware walker, but with normal instructions to load from memory. Thus,
the omission of a page table walker renders the processor more flexible,
as well as simpler. However, TLB misses become more expensive, as they
entail a context switch to the operating system with attendant loss of cache
locality. The MIPS processor, used in the Sony PlayStation 2, is an example
of a processor that handles TLB misses in software.

Architectures also differ in how they handle process switches. Recall that
each process may have its own private virtual memory address space. When
the operating system switches from one process to another, the translation
of virtual addresses to physical addresses needs to change as well. In some
architectures, this necessitates flushing all entries from the TLB. (There
may be an exception for global entries that are not flushed, because they
are shared by all processes.) Other architectures tag the TLB entries with a
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process identifying number, known as an address space identifier (ASID). A
special register keeps track of the current process’s ASID. For the operating
system to switch processes, it simply stores a new ASID into this one register;
the TLB need not be flushed. The TLB will hit only if the ASID and page
number both match, effectively ignoring entries belonging to other processes.

For those architectures with hardware page table walkers, each process
switch may also require changing the register pointing to the page table.
Typically, linear page tables and multilevel page tables are per process. If
an operating system uses a hashed page table, on the other hand, it may
share one table among all processes, using ASID tags just like in the TLB.

Having seen how the MMU holds page translations in its TLB, and how
those TLB entries are loaded from a page table either by a hardware walker
or operating system software, it is time now to turn to the structure of page
tables themselves.

6.3.2 Linear Page Tables

Linear page tables are conceptually the simplest form of page table, though
as you will see, they turn out to be not quite so simple in practice as they
are in concept. A linear page table is an array with one entry per page in
the virtual address space. The first entry in the table describes page 0, the
next describes page 1, and so forth. To find the information about page n,
one uses the same approach as for any array access: multiply n by the size
of a page table entry and add that to the base address of the page table.

Recall that each page either has a corresponding page frame or has none.
Therefore, each page table entry contains, at a minimum, a wvalid bit and
a page frame number. If the valid bit is 0, the page has no corresponding
frame, and the page frame number is unused. If the valid bit is 1, the
page is mapped to the specified page frame. Real page tables often contain
other bits indicating permissions (for example, whether writing is allowed),
dirtiness, and so forth.

Figure[6.10Jon page[225|showed an example virtual memory configuration
in which page 0 was held in page frame 1, page 1 in page frame 0, and page 6
in page frame 3. Figure shows how this information would be expressed
in a a linear page table. Notice that the page numbers are not stored in the
linear page table; they are implicit in the position of the entries. The first
entry is implicitly for page 0, the next for page 1, and so forth, on down to
page 7. If each page table entry is stored in 4 bytes, this tiny page table
would occupy 32 consecutive bytes of memory. The information that page 3
has no valid mapping would be found 12 bytes after the base address of the
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Figure 6.11: In a linear page table, the information about page n is stored
at position number n, counting from 0. In this example, the first row,
position 0, shows that page 0 is stored in page frame 1. The second-to-last
row, position 6, shows that page 6 is stored in page frame 3. The rows
with valid bit 0 indicate that no page frame holds the corresponding pages,
number 2-5 and 7. In these page table entries, the page frame number is
irrelevant and can be any number; an X is shown to indicate this.

table.

The fundamental problem with linear page tables is that real ones are
much larger than this example. For a 32-bit address space with 4-KB pages,
there are 220 pages, because 12 of the 32 bits are used to specify a location
within a page of 4 KB or 2'2 bytes. Thus, if you again assume 4 bytes per
page table entry, you now have a 4-MB page table. Storing one of those per
process could use up an undesirably large fraction of a computer’s memory.
(My computer is currently running 70 processes, for a hypothetical total
of 280 MB of page tables, which would be 36 percent of my total RAM.)
Worse yet, modern processors are moving to 64-bit address spaces. Even if
you assume larger pages, it is hard to see how a linear page table spanning
a 64-bit address space could be stored. In Exercise you can calculate
just how huge such a page table would be.

This problem of large page tables is not insurmountable. Linear page
tables have been used by 32-bit systems (for example, the VAX architec-
ture, which was once quite commercially important), and even 64-bit linear
page tables have been designed—Intel supports them as one option for its
current Itanium architecture. Because storing such a huge page table is
inconceivable, the secret is to find a way to avoid storing most of the table.

Recall that virtual memory address spaces are generally quite sparse:
only a small fraction of the possible page numbers actually have translations
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to page frames. (This is particularly true on 64-bit systems; the address
space is billions of times larger than for 32-bit systems, whereas the number
of pages actually used may be quite comparable.) This provides the key to
not storing the whole linear page table: you need only store the parts that
actually contain valid entries.

On the surface, this suggestion seems to create as big a problem as it
solves. Yes, you might now have enough memory to store the valid entries,
but how would you ever find the entry for a particular page number? Recall
that the whole point of a linear page table is to directly find the entry for
page n at the address that is n entries from the beginning of the table. If
you leave out the invalid entries, will this work any more? Not if you squish
the addresses of the remaining valid entries together. So, you had better
not do that.

You need to avoid wasting memory on invalid entries, and yet still be able
to use a simple array-indexing address calculation to find the valid entries.
In other words, the valid entries need to stay at the same addresses, whether
there are invalid entries before them or not. Said a third way, although you
want to be thrifty with storage of the page table, you cannot be thrifty with
addresses. This combination is just barely possible, because storage and
addressing need not be the same.

Divorcing the storage of the page table from the allocation of addresses
for its entries requires three insights:

e The pattern of address space usage, although sparse, is not completely
random. Often, software will use quite a few pages in a row, leave a
large gap, and then use many more consecutive pages. This clumping
of valid and invalid pages means that you can decide which portions of
the linear page table are worth storing at a relatively coarse granularity
and not at the granularity of individual page table entries. You can
store those chunks of the page table that contain any valid entries,
even if there are also a few invalid entries mixed in, and not store
those chunks that contain entirely invalid entries.

e In fact, you can choose your chunks of page table to be the same size as
the pages themselves. For example, in a system with 4-KB pages and
4-byte page table entries, each chunk of page table would contain 1024
page table entries. Many of these chunks won’t actually need storage,
because there are frequently 1024 unused pages in a row. Therefore,
you can view the page table as a bunch of consecutive pages, some of
which need storing and some of which don’t.
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e Now for the trick: use virtual memory to store the page table. That
way, you decouple the addresses of page table entries from where they
are stored—if anywhere. The virtual addresses of the page table entries
will form a nice orderly array, with the entry for page n being n entries
from the beginning. The physical addresses are another story. Recall
that the page table is divided into page-sized chunks, not all of which
you want to store. For those you want to store, you allocate page
frames, wherever in memory is convenient. For those you don’t want
to store, you don’t allocate page frames at all.

If this use of virtual memory to store the virtual memory’s page table
seems dizzying, it should. Suppose you start with a virtual address that has
been generated by a running application program. You need to translate
it into a physical address. To do so, you want to look up the virtual page
number in the page table. You multiply the application-generated virtual
page number by the page table entry size, add the base address, and get
another virtual address: the virtual address of the page table entry. So,
now what? You have to translate the page table entry’s virtual address to
a physical address. If you were to do this the same way, you would seem
to be headed down the path to infinite recursion. Systems that use linear
page tables must have a way out of this recursion. In Figure the box
labeled “?” must not be another copy of the whole diagram. That is where
the simple concept becomes a not-so-simple reality.

Most solutions to the recursion problem take the form of using two dif-
ferent representations to store the virtual-to-physical mapping information.
One (the linear page table) is used for application-generated virtual ad-
dresses. The other is used for the translation of page table entries’ virtual
addresses. For example, a multilevel page table can be used to provide the
mapping information for the pages holding the main linear page table; I will
describe multilevel page tables in Section [6.3.3]

This may leave you wondering what the point of the linear page table
is. If another representation is going to be needed anyway, why not use
it directly as the main page table, for mapping all pages, rather than only
indirectly, for mapping the page table’s pages? To answer this, you need
to recall that the MMU has a TLB in which it keeps track of recently used
virtual-to-physical translations; repeated access to the same virtual page
number don’t require access to the page table. Only when a new page
number is accessed is the page table (of whatever kind) accessed. This is
true not only when translating the application’s virtual address, but also
when translating the virtual address of a page table entry.
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Figure 6.12: This diagram shows how a virtual address, generated by an
application process, is translated into a physical address using a linear page
table. At one point in the translation procedure, indicated by a “?” in this
diagram, the virtual address of the page table entry needs to be translated
into a physical address. This must be done using a method that is different
from the one used for the application’s virtual address, in order to avoid an
infinite recursion. To see this, imagine inserting another copy of the whole
diagram in place of the “?” box. A second “?” would result, which would
require further substitution, and so forth to infinity.
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Depending on the virtual address generated by the application software,
there are three possibilities:

1. For an address within the same page as another recent access, no page
table lookup is needed at all, because the MMU already knows the
translation.

2. For an address on a new page, but within the same chunk of pages
as some previous access, only a linear page table lookup is needed,
because the MMU already knows the translation for the appropriate
page of the linear page table.

3. For an address on a new page, far from others that have been accessed,
both kinds of page table lookup are needed, because the MMU has no
relevant translations cached in its TLB.

Because virtual memory accesses generally exhibit temporal and spatial lo-
cality, most accesses fall into the first category. However, for those accesses,
the page table organization is irrelevant. Therefore, to compare linear page
tables with alternative organizations, you should focus on the remaining ac-
cesses. Of those accesses, spatial locality will make most fall into the second
category rather than the third. Thus, even if there is a multilevel page table
behind the scenes, it will be used only rarely. This is important, because the
multilevel page table may be quite a bit slower than the linear one. Using
the combination improves performance at the expense of complexity.

6.3.3 Multilevel Page Tables

Recall that the practicality of linear page tables relies on two observations:

e Because valid page table entries tend to be clustered, if the page table
is divided into page-sized chunks, there will be many chunks that don’t
need storage.

e The remaining chunks can be located as though they were in one big
array by using virtual memory address translation to access the page
table itself.

These two observations are quite different from one another. The first is
an empirical fact about most present-day software. The second is a design
decision. You could accept the first observation while still making a different
choice for how the stored chunks are located. This is exactly what happens
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with multilevel page tables (also known as hierarchical page tables or forward-
mapped page tables). They too divide the page table into page-sized chunks,
in the hopes that most chunks won’t need storage. However, they locate the
stored chunks without recursive use of virtual memory by using a tree data
structure, rather than a single array.

For simplicity, start by considering the two-level case. This suffices for
32-bit architectures and is actually used in the extremely popular TA-32
architecture, the architecture of Intel’s Pentium and AMD’s Athlon family
microprocessors. The TA-32 architecture uses 4-KB pages and has page
table entries that occupy 4 bytes. Thus, 1024 page-table entries fit within
one page-sized chunk of the page table. As such, a single chunk can span
4 MB of virtual address space. Given that the architecture uses 32-bit
virtual addresses, the full virtual address space is 4 gigabytes (GB) (that
is, 232 bytes); it can be spanned by 1024 chunks of the page table. All
you need to do is locate the storage of each of those 1024 chunks or, in
some cases, determine that the chunk didn’t merit storage. You can do that
using a second-level structure, much like each of the chunks of the page
table. It, too, is 4 KB in size and contains 1024 entries, each of which is
4 bytes. However, these entries in the second-level page directory point to
the 1024 first-level chunks of the page table, rather than to individual page
frames. See Figure[6.13]for an illustration of the IA-32 page table’s two-level
hierarchy, with branching factor 1024 at each level. In this example, page 1
is invalid, as are pages 1024—2047. You can explore this example further in
Exercise and can consider a modified version of this page table format
in Exercise

The operating system on an IA-32 machine stores the physical base ad-
dress of the page directory in a special register, where the hardware’s page
table walker can find it. Suppose that at some later point, the processor
generates a 32-bit virtual address and presents it to the MMU for trans-
lation. Figure shows the core of the translation process, omitting the
TLB and the validity checks. In more detail, the MMU follows the following
translation process:

1. Initially divide the 32-bit virtual address into its left-hand 20 bits (the
page number) and right-hand 12 bits (the offset within the page).

2. Look up the 20-bit page number in the TLB. If a TLB hit occurs,
concatenate the resulting page frame number with the 12-bit offset to
form the physical address. The process is over.

3. On the other hand, if a TLB miss occurred, subdivide the 20-bit page
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Figure 6.13: The IA-32 two-level page table has a page directory that can
point to 1024 chunks of the page table, each of which can point to 1024
page frames. The leftmost pointer leading from the leftmost chunk of the
page table points to the page frame holding page 0. Each entry can also be
marked invalid, indicated by an X in this diagram. For example, the second
entry in the first chunk of the page table is invalid, showing that no page
frame holds page 1. The same principle applies at the page directory level,
in this example, no page frames hold pages 1024-2047, so the second page
directory entry is marked invalid.



6.3. MECHANISMS FOR VIRTUAL MEMORY 237

Virtual address

Page number

——10 bits —>=—10 bits —><—12 bits —>

Page directory | Page table Offset within

index index page
4 4
N N
Page | A A
directory
base
| +

address of page
directory entry

Load from
memory

page tam

base

E

address of page
table entry

Load from
memory

S

P Offset within
age frame number
page frame

20 bits 12 bits —>=

Physical address

Figure 6.14: This diagram shows only the core of TA-32 paged address map-
ping, omitting the TLB and validity checks. The virtual address is divided
into a 20-bit page number and 12-bit offset within the page; the latter 12 bits
are left unchanged by the translation process. The page number is subdi-
vided into a 10-bit page directory index and a 10-bit page table index. Each
index is multiplied by 4, the number of bytes in each entry, and then added
to the base physical address of the corresponding data structure, producing
a physical memory address from which the entry is loaded. The base address
of the page directory comes from a register, whereas the base address of the
page table comes from the page directory entry.
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number into its left-hand 10 bits (the page directory index) and its
right-hand 10 bits (the page table index).

4. Load the page directory entry from memory; its address is four times
the page directory index plus the page directory base address, which
is taken from the special register.

5. Check the page directory entry’s valid bit. If it is 0, then there is no
page frame holding the page in question—or any of its 1023 neighbors,
for that matter. Interrupt the processor with a page fault.

6. Conversely, if the valid bit is 1, the page directory entry also contains
a physical base address for a chunk of page table.

7. Load the page table entry from memory; its address is four times the
page table index plus the page table base address, which comes from
the previous step.

8. Check the page table entry’s valid bit. If it is 0, then there is no page
frame holding the page in question. Interrupt the processor with a
page fault.

9. On the other hand, if the valid bit is 1, the page table entry also
contains the physical page frame number. Load the TLB and complete
the memory access.

This description, although somewhat simplified, shows the key feature of
the TA-32 design: it has a compact page directory, with each entry covering
a span of 4 MB. For the 4-MB regions that are entirely invalid, nothing
further is stored. For the regions containing valid pages, the page directory
entry points to another compact structure containing the individual page
table entries.

The actual IA-32 design derives some additional advantages from having
the page directory entries with their 4-MB spans:

e Each page directory entry can optionally point directly to a single
large 4-MB page frame, rather than pointing to a chunk of page table
entries leading indirectly to 4-KB page frames, as I described. This
option is controlled by a page-size bit in the page directory entry. By
using this feature, the operating system can more efficiently provide
the mapping information for large, contiguously allocated structures.
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e Each page directory entry contains permission bits, just like the page
table entries do. Using this feature, the operating system can mark an
entire 4-MB region of virtual address space as being read-only more
quickly, because it doesn’t need to set the read-only bits for each 4-
KB page in the region. The translation process outlined earlier is
extended to check the permission bits at each level and signal a page
fault interrupt if there is a permission violation at either level.

The same principle used for two-level page tables can be expanded to
any greater number of levels. If you have taken a course on data structures,
you may have seen this structure called a trie (or perhaps a digital tree or
radiz tree). The virtual page number is divided into groups of consecutive
bits. Fach group of bits forms an index for use at one level of the tree,
starting with the leftmost group at the top level. The indexing at each level
allows the chunk at the next level down to be located.

For example, the AMDG64 architecture (used in the Opteron and Athlon 64
processors and later imitated by Intel under the name IA-32¢) employs four-
level page tables of this kind. Although the AMD64 is nominally a 64-bit
architecture, the virtual addresses are actually limited to only 48 bits in
the current version of the architecture. Because the basic page size is still
4 KB, the rightmost 12 bits are still the offset within a page. Thus, 36 bits
remain for the virtual page number. Each page table entry (or similar entry
at the higher levels) is increased in size to 8 bytes, because the physical
addresses are larger than in IA-32. Thus, a 4-KB chunk of page table can
reference only 512 pages spanning 2 MB. Similarly, the branching factor at
each higher level of the tree is 512. Because 9 bits are needed to select from
512 entries, it follows that the 36-bit virtual page number is divided into
four groups of 9 bits each, one for each level of the tree.

Achieving adequate performance with a four-level page table is challeng-
ing. The AMD designers will find this challenge intensified if they extend
their architecture to full 64-bit virtual addresses, which would require two
more levels be added to the page table. Other designers of 64-bit processors
have made different choices: Intel’s Itanium uses either linear page tables or
hashed page tables, and the PowerPC uses hashed page tables.

6.3.4 Hashed Page Tables

You have seen that linear page tables and multilevel page tables have a
strong family resemblance. Both designs rely on the assumption that valid
and invalid pages occur in large clumps. As a result, each allows you to
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finesse the dilemma of wanting to store page table entries for successive
pages consecutively in memory, yet not wanting to waste storage on invalid
entries. You store page table entries consecutively within each chunk of the
table and omit storage for entire chunks of the table.

Suppose you take a radical approach and reject the starting assumption.
You will still assume that the address space is sparsely occupied; that is,
many page table entries are invalid and should not be stored. (After all, no
one buys 264 bytes of RAM for their 64-bit processor.) However, you will
no longer make any assumption about clustering of the valid and invalid
pages—they might be scattered randomly throughout the whole address
space. This allows greater flexibility for the designers of runtime environ-
ments. As a consequence, you will have to store individual valid page table
entries, independent of their neighbors.

Storing only individual valid page table entries without storing any of the
invalid entries takes away the primary tool used by the previous approaches
for locating entries. You can no longer find page n’s entry by indexing n
elements into an array—mnot even within each chunk of the address space.
Therefore, you need to use an entirely different approach to locating page
table entries. You can store them in a hash table, known as a hashed page
table.

A hashed page table is an array of hash buckets, each of which is a
fixed-sized structure that can hold some small number of page table entries.
(In the Itanium architecture, each bucket holds one entry, whereas in the
PowerPC, each bucket holds eight entries.) Unlike the linear page table,
this array of buckets does not have a private location for each virtual page
number; as such, it can be much smaller, particularly on 64-bit architectures.

Because of this reduced array size, the page number cannot be directly
used as an index into the array. Instead, the page number is first fed through
a many-to-one function, the hash function. That is, each page gets assigned
a specific hash bucket by the hash function, but many different pages get
assigned the same bucket. The simplest plausible hash function would be
to take the page number modulo the number of buckets in the array. For
example, if there are 1000000 hash buckets, then the page table entries for
pages 0, 1000000, 2000000, and so forth would all be assigned to bucket 0,
while pages 1, 1000001, 2000001, and so forth would all be assigned to
bucket 1.

The performance of the table relies on the assumption that only a few
of the pages assigned to a bucket will be valid and hence have page table
entries stored. That is, the assumption is that only rarely will multiple valid
entries be assigned to the same bucket, a situation known as a hash collision.
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To keep collisions rare, the page table size needs to scale with the number
of valid page table entries. Luckily, systems with lots of valid page table
entries normally have lots of physical memory and therefore have room for
a bigger page table.

Even if collisions are rare, there must be some mechanism for handling
them. One immediate consequence is that each page table entry will now
need to include an indication of which virtual page number it describes. In
the linear and multilevel page tables, the page number was implicit in the
location of the page table entry. Now, any one of many different page table
entries could be assigned to the same location, so each entry needs to include
an identifying tag, much like in the TLB.

For an unrealistically small example of using a hashed page table, we
can return to Figure [6.10] on page Suppose you have a hashed page
table with four buckets, each capable of holding one entry. Each of the four
entries will contain both a virtual page number and a corresponding physical
page frame number. If the hash function consists of taking the page number
modulo 4, the table would contain approximately the information shown in
Figure [6.15]

The possibility of collisions has another consequence, beyond necessi-
tating page number tags. Even if collisions occur, each valid page table
entry needs to be stored somewhere. Because the colliding entries cannot be
stored in the same location, some alternative location needs to be available.
One possibility is to have alternative locations within each hash bucket; this
is why the PowerPC has room for eight page table entries in each bucket.
Provided no collision involves more than this number of entries, they can
all be stored in the same bucket. The PowerPC searches all entries in the

Valid | Page | Page Frame
1 0 1
1 1 0
1 6 3
0 X X

Figure 6.15: Each entry in a hashed page table is in a location determined
by feeding the page number through a hash function. In this example, the
hash function consists of taking the page number modulo the number of
entries in the table, 4. Consider the entry recording that page 6 is held by
page frame 3. This entry is in position 2 within the table (counting from 0)
because the remainder when 6 is divided by 4 is 2.
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bucket, looking for one with a matching tag.

If a collision involving more than eight entries occurs on a PowerPC, or
any collision at all occurs on an Itanium processor, the collision cannot be
resolved within the hash bucket. To handle such collisions, the operating
system can allocate some extra memory and chain it onto the bucket in
a linked list. This will be an expensive but rare occurrence. As a result,
hardware page table walkers do not normally handle this case. If the walker
does not find a matching tag within the bucket, it uses an interrupt to
transfer control to the operating system, which is in charge of searching
through the linked list.

You have now seen two reasons why the page table entries in hashed
page tables need to be larger than those in linear or multilevel page tables.
The hashed page table entries need to contain virtual page number tags, and
each bucket needs a pointer to an overflow chain. As a result of these two
factors and the addition of some extra features, the Itanium architecture
uses 32-byte entries for hashed page tables versus 8-byte entries for linear
page tables.

Incidentally, the fact that the Itanium architecture supports two different
page table formats suggests just how hard it is to select one. Research
continues into the relative merits of the different formats under varying
system workloads. As a result of this research, future systems may use other
page table formats beyond those described here, though they are likely to be
variants on one of these themes. Architectures such as MIPS that have no
hardware page table walker are excellent vehicles for such research, because
they allow the operating system to use any page table format whatsoever.

Some operating systems treat a hashed page table as a software TLB,
a table similar to the hardware’s TLB in that it holds only selected page
table entries. In this case, no provision needs to be made for overfull hash
buckets; the entries that don’t fit can simply be omitted. A slower multilevel
page table provides a comprehensive fallback for misses in the software TLB.
This alternative is particularly attractive when porting an operating system
(such as Linux) that was originally developed on a machine with multilevel
page tables.

6.3.5 Segmentation

Thus far, I have acted as though virtual memory were synonymous with
paging. Today, that is true. However, when virtual memory was first de-
veloped in the 1960s, there were two competing approaches: paging and
segmentation. Some systems (notably Multics) also included a hybrid of
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the two. Thus, seen historically, segmentation was both a competitor and a
collaborator of paging. Today, segmentation remains only in vestigial form.
The IA-32 architecture still contains full support for segmentation, but no
common operating system uses it, and the successor architectures (Itanium
and AMD64) have dropped it. As such, this subsection can be omitted with
no great loss.

Recall that the basic premise of virtual memory is that a process uses
addresses as names for objects, whereas memory uses addresses as routing
information for storage locations. The defining property of segmentation
is that the processor’s virtual addresses name objects using two granulari-
ties: each virtual address names both an aggregate object, such as a table
or file, and a particular location within that object, such as a table entry
or a byte within a file. This is somewhat analogous to my name, “Max
Hailperin,” which identifies both the family to which I belong (Hailperin),
and the particular person within that family (Max).

The aggregate objects, such as tables or files, that have names akin
to family names are called segments. Each process refers to its segments
by segment number. Each virtual address is divided into two parts: some
number of bits are a segment number, and the remaining bits are a location
within that segment.

On the surface, segmented virtual addresses may not seem very different
from paged ones. After all, you saw that paged virtual addresses are also
divided into two parts: a page number and an offset within that page. For
example, a 32-bit address might be divided into a 20-bit page number and
a 12-bit offset within the page. The key difference is that pages are purely
an implementation detail; they do not correspond to logical objects such as
files, stacks, or tables.

Because segments correspond to logical objects, they cannot have a fixed
size, such as 4 KB. Each segment will have its own natural size. For example,
each file a process accesses might be mapped into the virtual address space
as its own segment. If so, the segment sizes will need to match the file sizes,
which could be quite arbitrary.

A system employing pure segmentation maps each segment into a con-
tiguous range of physical memory. Instead of a page table, the system uses a
segment table, which specifies for each segment number the starting physical
address, the size, and the permissions.

Unlike paging, pure segmentation does not provide for flexible allocation
of physical memory; external fragmentation may occur, where it is hard to
find enough contiguous free memory to accommodate a segment. In addi-
tion, pure segmentation does not provide good support for moving inactive
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information to disk, because only an entire segment can be transferred to or
from disk.

Because of these and similar problems, segmentation can be combined
with paging. Each process uses two-part addresses containing segment num-
bers and offsets. The MMU translates each of these addresses in two stages
using both a segment table and a page table. The end result is an offset
within a physical memory page frame. Thus, each segment may occupy any
available page frames, even if they are not contiguous, and individual pages
of the segment may be moved to disk.

Systems have combined segmentation with paging in two slightly differ-
ent ways, one exemplified by the IA-32 architecture and the other by the
Multics system. The key difference is whether all the segments share a sin-
gle page table, as in the IA-32, or are given individual page tables, as in
Multics.

Figure shows how segmentation and paging are used together in
the TA-32 architecture’s MMU. When the TA-32 MMU translates a virtual
address, it starts by looking up the segment number in a segment table,
yielding a starting address for the segment, a length, and permissions, just
like in systems that use pure segmentation. Assuming the permissions are
OK and the offset is legal with regard to the length, the MMU adds the
segment’s starting address to the offset. However, rather than treating the
sum as a physical address, the MMU treats it as a paged virtual address,
of the sort I have described in previous subsections. In IA-32 terminology,
this address is known as a linear address. The MMU looks up the linear
address in a single page table, shared by all the segments, in order to locate
the appropriate page frame.

Figure[6.17] shows an alternative method of combining segmentation and
paging, which was used in the Multics system. The Multics approach also
starts by looking up the segment number in a segment table, which again
provides information on the segment’s length and permissions to allow the
MMU to check the access for legality. However, this segment table does not
contain a starting address for the segment; instead, it contains a pointer to
the segment’s private page table. The MMU uses this segment-specific page
table to translate the offset within the segment, using techniques of the sort
you saw in previous subsections. The end result is again an offset within a
page frame.

Which approach is simpler for the operating system to manage? On
the surface, the IA-32 approach looks simpler, because it uses only a single
page table instead of one per segment. However, it has a significant disad-
vantage relative to the Multics approach. Remember that both approaches
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Virtual address

Segment number | Offset within segment

Segment table

segment
base

Linear address

P Offset within
age number
page
Unified
page table

Offset within

Page frame number
page frame
Physical address

Figure 6.16: The TA-32 architecture combines segmentation and paging us-
ing a single page table for all the segments. The segment table is used to
translate the segment number into a base address, to which the offset within
the segment is added, yielding a linear address. The linear address is then
translated to a physical address using the unified page table, as shown in
greater detail in Figure [6.14]
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Virtual address

Segment Page number Offset
number 8 within page
Segment
table
page table
base Segment-specific
page table
P Offset within
age frame number
page frame

Physical address

Figure 6.17: The Multics system combines segmentation and paging using a
separate page table for each segment. The segment table is used to find the
appropriate page table, which is then used to translate the address within
the segment.

allow space in physical memory to be flexibly allocated in individual, non-
contiguous page frames. However, the IA-32 approach forces each segment
to be allocated a single contiguous region of address space at the level of
linear addresses. Thus, the IA-32 approach forces the operating system to
deal with the complexities of contiguous allocation, with its potential for
external fragmentation.

Unlike pure segmentation, which is undeniably inferior to paging, the
combination of segmentation and paging seems attractive, as it combines
segmentation’s meaningful units for protection and sharing with paging’s
smaller fixed-size units for space allocation and data transfer. However,
many of the same protection and sharing features can be simulated using
paging alone. Probably as a result of this, many hardware designers decided
the cost of segmentation, in both money and performance, was not justified
by the gain. Therefore, they provided support only for paging. This created
a disincentive for the use of segmentation in operating systems; all popular
operating systems (such as UNIX, Microsoft Windows, and Linux) are de-
signed to be portable across multiple hardware architectures, some of which
don’t support segmentation. As a result, none of these operating systems
makes any use of segmentation, even on systems where it is supported. This
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completes a cycle of disincentives; designers of modern architectures have
no reason to support segmentation, because modern operating systems do
not use it.

Although modern architectures no longer support segmentation, they do
have one feature that is reminiscent of the combination of segmentation and
paging. Recall that TLBs and hashed page tables use ASIDs to tag page
translations so that translations from different processes can coexist. I said
that a special register holds the ASID of the current process. In actual-
ity, many modern architectures allow each process to use several different
ASIDs; the top few bits of each virtual address select one of a group of ASID
registers. Thus, address translation occurs in two steps. First, the top bits
of the address are translated to an ASID; then the ASID and the remaining
bits are translated into a page frame and offset. If the operating system
sets up several processes to use the same ASID for a shared library, they
will wind up sharing not only the page frames, but also the page table and
TLB entries. This is akin to processes sharing a segment. However, unlike
segmentation, it is invisible at the application level. Also, the number of
segments (ASIDs) per process may be quite limited: eight on the Itanium
and 16 on the 32-bit version of PowerPC.

6.4 Policies for Virtual Memory

Thus far, I have defined virtual memory, explained its usefulness, and shown
some of the mechanisms typically used to map pages to page frames. Mech-
anisms alone, however, are not enough. The operating system also needs
a set of policies describing how the mechanisms are used. Those policies
provide answers for the following questions:

e At what point is a page assigned a page frame? Not until the page is
first accessed, or at some earlier point? This decision is particularly
performance critical if the page needs to be fetched from disk at the
time it is assigned a page frame. For this reason, the policy that
controls the timing of page frame assignment is normally called the
fetch policy.

e Which page frame is assigned to each page? I have said that each
page may be assigned any available frame, but some assignments may
result in improved performance of the processor’s cache memory. The
policy that selects a page frame for a page is known as the placement
policy.
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e If the operating system needs to move some inactive page to disk in
order to free up a page frame, which page does it choose? This is
known as the the replacement policy, because the page being moved
to disk will presumably be replaced by a new page—that being the
motivation for freeing a page frame.

All of these policies affect system performance in ways that are quite
workload dependent. For example, a replacement policy that performs well
for one workload might perform terribly on another; for instance, it might
consistently choose to evict a page that is accessed again a moment later.
As such, these policies need to be chosen and refined through extensive
experimentation with many real workloads. In the following subsections,
I will focus on a few sample policies that are reasonably simple and have
performed adequately in practice.

6.4.1 Fetch Policy

The operating system has wide latitude regarding when each page is a as-
signed a page frame. At one extreme, as soon as the operating system knows
about a page’s existence, it could assign a page frame. For example, when a
process first starts running, the operating system could immediately assign
page frames for all the pages holding the program and its statically allocated
data. Similarly, when a process asks the operating system to map a file into
the virtual memory address space, the operating system could assign page
frames for the entire file. At the other extreme, the operating system could
wait for a page fault caused by an access to a page before assigning that
page a page frame. In between these extremes lies a range of realistic fetch
policies that try to stay just a little ahead of the process’s needs.

Creating all page mappings right away would conflict with many of the
original goals for virtual memory, such as fast start up of programs that
contain large but rarely used portions. Therefore, one extreme policy can
be discarded. The other, however, is a reasonable choice under some circum-
stances. A system is said to use demand paging if it creates the mapping for
each page in response to a page fault when accessing that page. Conversely,
it uses prepaging if it attempts to anticipate future page use.

Demand paging has the advantage that it will never waste time creating
a page mapping that goes unused; it has the disadvantage that it incurs
the full cost of a page fault for each page. On balance, demand paging is
particularly appropriate under the following circumstances:

e If the process exhibits limited spatial locality, the operating system is
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unlikely to be able to predict what pages are going to be used soon.
This makes paging in advance of demand less likely to pay off.

e If the cost of a page fault is particularly low, even moderately accurate
predictions of future page uses may not pay off, because so little is
gained each time a correct prediction allows a page fault to be avoided.

The Linux operating system uses demand paging in exactly the circum-
stances suggested by this analysis. The fetch policy makes a distinction
between zero-filled pages and those that are read from a file, because the
page fault costs are so different. Linux uses demand paging for zero-filled
pages because of their comparatively low cost. In contrast, Linux ordinarily
uses a variant of prepaging (which I explain in the remainder of this sub-
section) for files mapped into virtual memory. This makes sense because
reading from disk is slow. However, if the application programmer notifies
the operating system that a particular memory-mapped file is going to be ac-
cessed in a “random” fashion, then Linux uses demand paging for that file’s
pages. The programmer can provide this information using the madvise
procedure.

The most common form of prepaging is clustered paging, in which each
page fault causes a cluster of neighboring pages to be fetched, including the
one incurring the fault. Clustered paging is also called read around, because
pages around the faulting page are read. (By contrast, read ahead reads the
faulting page and later pages, but no earlier ones.)

The details of clustered paging vary between operating systems. Linux
reads a cluster of sixteen pages aligned to start with a multiple of 16. For
example, a page fault on any of the first sixteen pages of a file will cause
those sixteen pages to be read. Thus, the extra fifteen pages can be all
before the faulting page, all after it, or any mix. Microsoft Windows uses a
smaller cluster size, which depends in part on the kind of page incurring the
fault: instructions or data. Because instruction accesses generally exhibit
more spatial locality than data accesses, Windows uses a larger cluster size
for instruction pages than for data pages.

Linux’s read around is actually a slight variant on the prepaging theme.
When a page fault occurs, the fault handler fetches a whole cluster of pages
into RAM but only updates the faulting page table entry. The other pages
are in RAM but not mapped into any virtual address space; this status is
known as the page cache. Subsequent page faults can quickly find pages
in the page cache. Thus, read around doesn’t decrease the total number
of page faults, but converts many from major page faults (reading disk) to
minor page faults (simply updating the page table).
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Because reading from disk takes about 10 milliseconds and because read-
ing sixteen pages takes only slightly longer than reading one, the success rate
of prepaging doesn’t need to be especially high for it to pay off. For example,
if the additional time needed to read and otherwise process each prepaged
page is half a millisecond, then reading a cluster of sixteen pages, rather
than a single page, adds 7.5 milliseconds. This would be more than repaid
if even a single one of the fifteen additional pages gets used, because the
prepaging would avoid a 10-millisecond disk access time.

6.4.2 Placement Policy

Just as the operating system needs to determine when to make a page res-
ident (on demand or in advance), it needs to decide where the page should
reside by selecting one of the unused page frames. This choice influences the
physical memory addresses that will be referenced and can thereby influence
the miss rate of the cache memory hardware.

Although cache performance is the main issue in desktop systems, there
are at least two other reasons why the placement policy may matter. In
large-scale multiprocessor systems, main memory is distributed among the
processing nodes. As such, any given processor will have some page frames
it can more rapidly access. Microsoft’s Windows Server 2003 takes this
effect into account when allocating page frames. Another issue, likely to
become more important in the future, is the potential for energy savings if
all accesses can be confined to only a portion of memory, allowing the rest
to be put into standby mode.

To explain why the placement policy influences cache miss rate, I need
to review cache memory organization. An idealized cache would hold the
n most recently accessed blocks of memory, where n is the cache’s size.
However, this would require each cache access to examine all n blocks,
looking to see if any of them contains the location being accessed. This
approach, known as full associativity, is not feasible for realistically large
caches. Therefore, real caches restrict any given memory location to only a
small set of positions within the cache; that way, only those positions need
to be searched. This sort of cache is known as set-associative. For exam-
ple, a two-way set-associative cache has two alternative locations where any
given memory block can be stored. Many caches, particularly those beyond
the first level (L1), use the physical address rather than the virtual address
to select a set.

Consider what would happen if a process repeatedly accesses three blocks
of memory that have the misfortune of all competing for the same set of a



6.4. POLICIES FOR VIRTUAL MEMORY 251

two-way set-associative cache. Even though the cache may be large—capable
of holding far more than the three blocks that are in active use—the miss
rate will be very high. The standard description for this situation is to
say the cache is suffering from conflict misses rather than capacity misses.
Because each miss necessitates an access to the slower main memory, the
high rate of conflict misses will significantly reduce performance.

The lower the cache’s associativity, the more likely conflict misses are
to be a problem. Thus, careful page placement was more important in
the days when caches were external to the main microprocessor chips, as
external caches are often of low associativity. Improved semiconductor tech-
nology has now allowed large caches to be integrated into microprocessors,
making higher associativity economical and rendering placement policy less
important.

Suppose, though, that an operating system does wish to allocate page
frames to reduce cache conflicts. How should it know which pages are im-
portant to keep from conflicting? One common approach is to assume that
pages that would not conflict without virtual memory address translation
should not conflict even with address translation; this is known as page col-
oring. Another common approach is to assume that pages that are mapped
into page frames soon after one another are likely to also be accessed in
temporal proximity; therefore, they should be given nonconflicting frames.
This is known as bin hopping.

The main argument in favor of page coloring is that it leaves intact any
careful allocation done at the level of virtual addresses. Some compiler au-
thors and application programmers are aware of the importance of avoiding
cache conflicts, particularly in high-performance scientific applications, such
as weather forecasting. For example, the compiler or programmer may pad
each row of an array with a little wasted space so that iterating down a
column of the array won’t repeatedly access the same set of the cache. This
kind of cache-conscious data allocation will be preserved by page coloring.

The main argument in favor of bin hopping is that experimental evidence
suggests it performs better than page coloring does, absent cache-conscious
data allocation. This may be because page coloring is less flexible than bin
hopping, providing only a way of deciding on the most preferred locations
in the cache for any given page, as opposed to ranking all possible locations
from most preferred to least.
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6.4.3 Replacement Policy

Conceptually, a replacement policy chooses a page to evict every time a page
is fetched with all page frames in use. However, operating systems typically
try do some eviction in advance of actual demand, keeping an inventory
of free page frames. When the inventory drops below a low-water mark,
the replacement policy starts freeing up page frames, continuing until the
inventory surpasses a high-water mark. Freeing page frames in advance of
demand has three advantages:

e Last-minute freeing in response to a page fault will further delay the
process that incurred the page fault. In contrast, the operating system
may schedule proactive work to maintain an inventory of free pages
when the hardware is otherwise idle, improving response time and
throughput.

e Evicting dirty pages requires writing them out to disk first. If the
operating system does this proactively, it may be able to write back
several pages in a single disk operation, making more efficient use of
the disk hardware.

e In the time between being freed and being reused, a page frame can
retain a copy of the page it most recently held. This allows the oper-
ating system to inexpensively recover from poor replacement decisions
by retrieving the page with only a minor page fault instead of a major
one. That is, the page can be retrieved by mapping it back in without
reading it from disk. You will see that this is particularly important
if the MMU does not inform the replacement policy which pages have
been recently referenced.

In a real operating system, a page frame may go through several tempo-
rary states between when it is chosen for replacement and when it is reused.
For example, Microsoft Windows may move a replaced page frame through
the following four inventories of page frames, as illustrated in Figure [6.18}

e When the replacement policy first chooses a dirty page frame, the
operating system moves the frame from a process’s page table to the
modified page list. The modified page list retains information on the
previous page mapping so that a minor page fault can retrieve the
page. (Microsoft calls this a soft page fault.)

e If a page frame remains in the modified page list long enough, a system
thread known as the modified page writer will write the contents out
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Figure 6.18: Each page frame in Microsoft Windows that is not referenced
from a page table is included in one of the four page lists. Page frames
circulate as shown here. For example, the system can use a soft page fault
to recover a page frame from the modified or standby page list, if the page
contained in that page frame proves to still be needed after having been
evicted by the replacement policy.
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to disk and move the frame to the standby page list. A page frame can
also move directly from a process’s page table to the standby page list
if the replacement policy chooses to evict a clean page. The standby
page list again retains the previous mapping information so that a soft
page fault can inexpensively recover a prematurely evicted page.

e If a page frame remains on standby for long enough without being
faulted back into use, the operating system moves it to the free page
list. This list provides page frames for the system’s zero page thread
to proactively fill with zeros, so that zero-filled pages will be available
to quickly respond to page faults, as discussed earlier. The operating
system also prefers to use a page frame from the free list when reading
a page in from disk.

e Once the zero page thread has filled a free page frame with zeros, it
moves the page frame to the zero page list, where it will remain until
mapped back into a process’s page table in response to a page fault.

Using a mechanism such as this example from Windows, an operating
system keeps an inventory of page frames and thus need not evict a page
every time it fetches a page. In order to keep the size of this inventory
relatively stable over the long term, the operating system balances the rate
of page replacements with the rate of page fetches. It can do this in either
of two different ways, which lead to the two major categories of replacement
policies, local replacement and global replacement.

Local replacement keeps the rate of page evictions and page fetches bal-
anced individually for each process. If a process incurs many page faults,
it will have to relinquish many of its own page frames, rather than pushing
other processes’ pages out of their frames. The replacement policy chooses
which page frames to free only from those held by a particular process. A
separate allocation policy decides how many page frames each process is
allowed.

Global replacement keeps the rate of page evictions and page fetches
balanced only on a system-wide basis. If a process incurs many page faults,
other process’s pages may be evicted from their frames. The replacement
policy chooses which page frames to free from all the page frames, regardless
which processes they are used by. No separate page frame allocation policy
is needed, because the replacement policy and fetch policy will naturally
wind up reallocating page frames between processes.

Of the operating systems popular today, Microsoft Windows uses local
replacement, whereas all the members of the UNIX family, including Linux
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and Mac OS X, use global replacement. Microsoft’s choice of a local re-
placement policy for Windows was part of a broader pattern of following
the lead of Digital Equipment Corporation’s VMS operating system, which
has since become HP’s OpenVMS. The key reason why VMS’s designers
chose local replacement was to prevent poor locality of reference in one pro-
cess from greatly hurting the performance of other processes. Arguably, this
performance isolation is less relevant for a typical Windows desktop or server
workload than for VMS’s multi-user real-time and timesharing workloads.
Global replacement is simpler, and it more flexibly adapts to processes whose
memory needs are not known in advance. For these reasons, it tends to be
more efficient.

Both local and global replacement policies may be confronted with a sit-
uation where the total size of the processes’ working sets exceeds the number
of page frames available. In the case of local replacement, this manifests it-
self when the allocation policy cannot allocate a reasonable number of page
frames to each process. In the case of global replacement, an excessive de-
mand for memory is manifested as thrashing, that is, by the system spending
essentially all its time in paging and process switching, producing extremely
low throughput.

The traditional solution to excess memory demand is swapping. The
operating system picks some processes to evict entirely from memory, writing
all their data to disk. Moreover, it removes those processes’ threads from the
scheduler’s set of runnable threads, so that they will not compete for memory
space. After running the remaining processes for a while, the operating
system swaps some of them out and some of the earlier victims back in.
Swapping adds to system complexity and makes scheduling much choppier;
therefore, some global replacement systems such as Linux omit it and rely
on users to steer clear of thrashing. Local replacement systems such as
Microsoft Windows, on the other hand, have little choice but to include
swapping. For simplicity, I will not discuss swapping further in this text.
You should know what it is, however, and should also understand that some
people incorrectly call paging swapping; for example, you may hear of Linux
swapping, when it really is paging. That is, Linux is moving individual pages
of a process’s address space to disk and back, rather than moving the entire
address space.

Having seen some of the broader context into which replacement policies
fit, it is time to consider some specific policies. I will start with one that is
unrealistic but which provides a standard against which other, more realistic
policies can be measured. If the operating system knew in advance the full
sequence of virtual memory accesses, it could select for replacement the page
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that has its next use furthest in the future. This turns out to be more than
just intuitively appealing: one can mathematically prove that it optimizes
the number of demand fetches. Therefore, this replacement policy is known
as optimal replacement (OPT).

Real operating systems don’t know future page accesses in advance.
However, they may have some data that allows the probability of differ-
ent page accesses to be estimated. Thus, a replacement policy could choose
to evict the page estimated to have the longest time until it is next used.
As one special case of this, consider a program that distributes its memory
accesses across the pages randomly but with unequal probabilities, so that
some pages are more frequently accessed than others. Suppose that these
probabilities shift only slowly. In that case, pages which have been accessed
frequently in the recent past are likely to be accessed again soon, and con-
versely, those that have not been accessed in a long while are unlikely to be
accessed soon. As such, it makes sense to replace the page that has gone the
longest without being accessed. This replacement policy is known as Least
Recently Used (LRU ).

LRU replacement is more realistic than OPT, because it uses only infor-
mation about the past, rather than about the future. However, even LRU
is not entirely realistic, because it requires keeping a list of page frames in
order by most recent access time and updating that list on every memory
access. Therefore, LRU is used much as OPT is, as a standard against which
to compare other policies. However, LRU is not a gold standard in the same
way that OPT is; while OPT is optimal among all policies, LRU may not
even be optimal among policies relying only on past activity. Real processes
do not access pages randomly with slowly shifting probability distributions.
For example, a process might repeatedly loop through a set of pages, in
which case LRU will perform terribly, replacing the page that will be reused
soonest. Nonetheless, LRU tends to perform reasonably well in many realis-
tic settings; therefore, many other replacement policies try to approximate
it. While they may not replace the least recently used page, they will at
least replace a page that hasn’t been used very recently.

Before considering realistic policies that approximate LRU, I should in-
troduce one other extremely simple policy, which can serve as a foundation
for an LRU-approximating policy, though it isn’t one itself. The simple
policy is known as first in, first out replacement (FIFO). The name tells
the whole story: the operating system chooses for replacement whichever
page frame has been holding its current page the longest. Note the differ-
ence between FIFO and LRU; FIFO chooses the page that was fetched the
longest ago, even if it continues to be in frequent use, whereas LRU chooses
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the page that has gone the longest without access. Figure [6.19] shows an
example where LRU outperforms FIFO and is itself outperformed by OPT.
This performance ordering is not universal; in Exercises and you
can show that FIFO sometimes outperforms LRU and that OPT does not
always perform strictly better than the others.

FIFO is not a very smart policy; in fact, early simulations showed that it
performs comparably to random replacement. Beyond this mediocre perfor-
mance, one sign that FIFO isn’t very smart is that it suffers from Belady’s
anomaly: increasing the number of page frames available may increase the
number of page faults, rather than decreasing it as one would expect. In
Exercise you can generate an example of this counterintuitive perfor-
mance phenomenon.

Both OPT and LRU are immune from Belady’s anomaly, as are all other
members of the class of stack algorithms. A stack algorithm is a replacement
policy with the property that if you run the same sequence of page references
on two systems using that replacement policy, one with n page frames and
the other with n + 1, then at each point in the reference sequence the n
pages that occupy page frames on the first system will also be resident in
page frames on the second system. For example, with the LRU policy, the
n most recently accessed pages will be resident in one system, and the n+ 1
most recently accessed pages will be resident in the other. Clearly the n + 1
most recently accessed pages include the n most recently accessed pages. In
Exercise you can come up with a similar justification for my claim that
OPT is a stack algorithm.

Recall that at the beginning of this subsection, I indicated that page
frames chosen for replacement are not immediately reused, but rather enter
an inventory of free page frames. The operating system can recover a page
from this inventory without reading from disk, if the page is accessed again
before the containing page frame is reused. This refinement turns out to
dramatically improve the performance of FIFO. If FIFO evicts a page that
is frequently used, chances are good that it will be faulted back in before the
page frame is reused. At that point, the operating system will put it at the
end of the FIFO list, so it will not be replaced again for a while. Essentially,
the FIFO policy places pages on probation, but those that are accessed
while on probation aren’t actually replaced. Thus, the pages that wind up
actually replaced are those that were not accessed recently, approximating
LRU. This approximation to LRU, based on FIFO, is known as Segmented
FIFO (SFIFO).

To enable smarter replacement policies, some MMUs provide a reference
bit in each page table entry. Every time the MMU translates an address, it
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1 2 1 3 1 2 3
1 1 1 1 1 2 2

orT m m h m h m h
2 2 3 3 3 3
1 1 1 1 1 1 3

LRU m m h m h m m
2 2 3 3 2 2
1 1 1 3 3 2 2

FIFO m m h m m m m
2 2 2 1 1 3

Figure 6.19: In this comparison of the OPT, LRU, and FIFO replacement
policies, each pair of boxes represents the two page frames available on an
unrealistically small system. The numbers within the boxes indicate which
page is stored in each page frame. The numbers across the top are the
reference sequence, and the letters h and m indicate hits and misses. In
this example, LRU performs better than FIFO, in that it has one more hit.
OPT performs even better, with three hits.

sets the corresponding page’s reference bit to 1. (If the address translation
is for a write to memory, the MMU also sets the dirty bit that I mentioned
earlier.) The replacement policy can inspect the reference bits and set them
back to 0. In this way, the replacement policy obtains information on which
pages were recently used. Reference bits are not easy to implement effi-
ciently, especially in multiprocessor systems; thus, some systems omit them.
However, when they exist, they allow the operating system to find whether
a page is in use more cheaply than by putting it on probation and seeing
whether it gets faulted back in.

One replacement policy that uses reference bits to approximate LRU is
clock replacement. In clock replacement, the operating system considers the
page frames cyclically, like the hand of a clock cycling among the numbered
positions. When the replacement policy’s clock hand is pointing at a par-
ticular page, the operating system inspects that page’s reference bit. If the
bit is 0, the page has not been referenced recently and so is chosen for re-
placement. If the bit is 1, the operating system resets it to 0 and moves the
pointer on to the next candidate. That way, the page has a chance to prove
its utility, by having its reference bit set back to 1 before the pointer comes
back around. As a refinement, the operating system can also take the dirty
bit into account, as follows:
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e reference = 1: set reference to 0 and move on to the next candidate
e reference = 0 and dirty = 0: choose this page for replacement

e reference = 0 and dirty = 1: start writing the page out to disk and
move on to the next candidate; when the writing is complete, set dirty
to 0

Replacement policies such as FIFO and clock replacement can be used
locally to select replacement candidates from within a process, as well as
globally. For example, some versions of Microsoft Windows use clock re-
placement as the local replacement policy on systems where reference bits
are available, and FIFO otherwise.

6.5 Security and Virtual Memory

Virtual memory plays a central role in security because it provides the mech-
anism for equipping each process with its own protected memory. Because
this is the topic of Chapter [7} I will not discuss it further here. I will also
defer most other security issues to that chapter, because they have close re-
lationships with the process concept and with protection. However, there is
one classic virtual memory security issue that I can best discuss here, which
is particularly relevant to application programmers.

Recall that the most traditional use of virtual memory is to simulate
having lots of RAM by moving inactive pages to disk. This can create a
security problem if a program processes confidential data that should not
be permanently stored. For high-security applications, you may not want to
rely on the operating system to guard the data that is on disk. Instead, you
may want to ensure the sensitive information is never written to disk. That
way, even if an adversary later obtains physical possession of the disk drive
and can directly read all its contents, the sensitive information will not be
available.

Many cryptographic systems are designed around this threat model, in
which disks are presumed to be subject to theft. As a familiar example, most
systems do not store login passwords on disk. Instead, they store the results
of feeding the passwords through a one-way function. That suffices for check-
ing entered passwords without making the passwords themselves vulnerable
to exposure. Programs such as the login program and the password-changing
program store the password only temporarily in main memory.

Application programmers may think their programs keep sensitive data
only temporarily in volatile main memory and never store it out to disk. The
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programmers may even take care to overwrite the memory afterward with
something safe, such as zeros. Even so, a lasting record of the confidential
data may be on the disk if the virtual memory system wrote out the page in
question during the vulnerable period. Because the virtual memory is inten-
tionally operating invisibly behind the scenes, the application programmers
will never know.

To protect your programs against this vulnerability, you need to forbid
the operating system from writing a sensitive region of memory out to disk.
In effect, you want to create an exception to the normal replacement pol-
icy, in which certain pages are never chosen for replacement. The POSIX
standard API contains two procedures you can use for this purpose, mlock
and mlockall. Unfortunately, overuse of these procedures could tie up all
the physical memory, so only privileged processes are allowed to use them.
Of course, some programs handling sensitive information, such as the login
program, need to run with special privileges anyway for other reasons.

Exercises

6.1 In Section I introduced an analogy with an executive and a file
clerk. Extend this analogy to a clerk serving multiple executives. Give
a plausible scenario where the clerk might need to understand that two
executives are referring to two different documents, even though they
are using the same name for the documents. Give another plausible
scenario where two executives would use different names to refer to
the same document. Explain how the clerk would cope with these
scenarios. What is the connection to virtual memory?

6.2 The file containing an executable program generally contains not only
the read-only text of the program, but also the initial contents for
some writable data structures. Explain how and why COW could be
used for this writable region.

6.3 I mentioned that typical page sizes have grown over the decades.
Brainstorm considerations that would make smaller pages better than
larger pages and other considerations that would make larger pages
better than smaller. Now think about what has changed over the
decades. Can you identify any argument favoring small pages that
has weakened over time? Can you identify any argument favoring
large pages that has strengthened over time? Presumably, these fac-
tors account for the historical trend in page sizes. On the other hand,
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you may also be able to identify one or more factors that would have
suggested the reverse trend; if so, they were presumably outweighed.

The previous exercise concerns factors influencing the historical trend
in page sizes. On the other hand, there are also real-world influences
causing page sizes to remain unchanged for many years. Can you think
of what some of these influences might be?

Assume a page size of 4 KB and the page mapping shown in Figure[6.10]
on page What are the virtual addresses of the first and last 4-byte
words in page 67 What physical addresses do these translate into?

Suppose the rightmost k bits within an address are used to represent an
offset within a page, with the remaining bits used for the page number.
Consider the location at offset j within page n. Give a mathematical
formula for the address of this location.

Suppose the rightmost & bits within a virtual or physical address are
used to represent an offset within a page or page frame, with the re-
maining bits used for the page number or page frame number. Suppose
that for all integers n, page number n is mapped by the page table
into page frame number f(n). Give a mathematical formula for the
physical address that corresponds with virtual address v.

Suppose an architecture uses 64-bit virtual addresses and 1-MB pages.
Suppose that a linear page table is stored in full for each process,
containing a page table entry for every page number. Suppose that
the size of each page table entry is only 4 bytes. How large would each
page table be?

At the lower right of Figure[6.13|on page[236|are page numbers 1047552
and 1047553. Explain how these page numbers were calculated.

My discussion of IA-32 multilevel page tables is based on the original
version of the architecture, which limited physical addresses to 32 bits.
Newer [A-32 processors offer an optional Physical Address Extension
(PAE) mode in order to address up to sixteen times as much RAM.
One consequence of this is that page table entries (and page directory
entries) are increased to 8 bytes instead of 4. Each page and chunk of
page table is still 4 KB.

(a) How many entries can each chunk of page table or page directory
now hold?
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(b) How big a virtual address range does each chunk of page table
now span? (A page directory entry can also directly point to a
large page frame this size, just as without PAE it can directly
point to a 4-MB page frame.)

(¢) How big a virtual address range can each page directory now
span?

(d) Because each page directory can no longer span the full 4-GB
virtual address range, PAE requires adding a third level to the
top of the tree. The newly added root node doesn’t have as
large as branching factor as you calculated in part (a) for the
preexisting two levels. How many page directories does the root

point to?
(e) Draw a diagram analogous to Figure on page for PAE
mode.

Figure on page[258 shows a small example where LRU has a lower
miss rate than FIFO replacement. Develop an example of similar size
in which FIFO has a lower miss rate than LRU.

In Figure [6.19) on page both LRU and FIFO replacement have
higher miss rates than OPT. Develop an example of similar size in
which at least one of LRU and FIFO has as low a miss rate as OPT
does.

Show a small example of Belady’s anomaly. That is, give a small
integer, n, and a short sequence of page number references such that
when the FIFO replacement policy is given n initially empty page
frames, fewer misses result from the reference sequence than when
n + 1 initially empty page frames are used.

Justify my claim that OPT is a stack algorithm. You may assume
that ties are broken by replacing the lowest numbered page of those
involved in the tie.

When conducting measurement studies, it is always good to conduct
multiple trials of any experiment, rather than reporting data only from
a single run. In the particular case of a study of how much paging is
caused by a particular activity, why is it important to reboot between
each experimental run and the next?

Multiple page table entries can point to the same page frame. In the
extreme case, an entire virtual address space of 264 bytes could be made
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readable as zeros by having all the page table entries marked read-only
and pointed at a single zeroed-out page frame. What assumption in
the section on hashed page tables (Section would this violate?
What problems would that cause?

6.17 Consider the Windows operating system’s choice of a page frame to

use when reading a page in from disk.
(a) Why does it make sense to prefer a page frame from the free page
list over one from the zero page list?

(b) Why does it make sense to prefer a page frame from the free page
list over one from the standby page list?

(¢) Why would a page frame on the modified page list be an even
worse choice than one on the standby page list?

Programming Projects

6.1

6.2

Write a program that loops many times, each time using an inner
loop to access every 4096th element of a large array of bytes. Time
how long your program takes per array access. Do this with varying
array sizes. Are there any array sizes when the average time suddenly
changes? Write a report in which you explain what you did, and the
hardware and software system context in which you did it, carefully
enough that someone could replicate your results.

On a system (such as Linux or most versions of UNIX, including Mac
OS X) that supports the mmap and madvise (or posix_madvise) sys-
tem calls, read the online manual pages for them and write four simple
C test programs that map a large file into virtual memory. Two pro-
grams should use madvise to indicate random access; one of them
should then genuinely access the file randomly, whereas the other
should access all of it sequentially. The other two programs should
use madvise to indicate sequential access; again, one should behave
sequentially and one randomly. Time the programs, rebooting the
computer before each run. Write a report in which you explain what
you did, and the hardware and software system context in which you
did it, carefully enough that someone could replicate your results. Your
report should draw some conclusions from your experiments: does cor-
rect use of madvise seem important to the performance of your test
system?
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Exploration Projects

6.1

6.2

6.3

6.4

On a Linux system, you can find the files mapped into a process’s
address space by typing a command of the following form:

cat /proc/n/maps

where n is the process’s ID number. Read the documentation for proc
in Section 5 of the online manual in order to understand the output
format. Then look through the various processes’ maps to see if you
can find a case where the same file is mapped into two processes’
address spaces, but at different virtual addresses. (On most Linux
systems with a variety of networking software and so forth, such cases
will exist.)

On a Linux or UNIX system, including Mac OS X, you can find in-
formation about processes by using the ps command. To include all
processes, you need to provide the option letters ax. If you give the
letter 1 as an option, you will receive additional columns of informa-
tion about each process, including SIZE or VSZ (the virtual memory
size) and RSS (the resident set size, in physical memory). Use the
ps axl command and note the sizes. Presumably, the virtual size is
always bigger than the resident set size. If you calculate a ratio of the
two sizes for each process, what range do the ratios span? What is the
median ratio?

If you compile and run the C program in Figure [6.20| on a Linux or
UNIX system (including Mac OS X), it will run the ps 1 command as
in the preceding project, and in the output you will be able to see its
own virtual memory and resident set sizes. The program contains a
large zero-filled array, large_array, most of which goes unused. How
do the virtual and resident set sizes of this process compare? If you
change the size of large_array and recompile and run, which size
changes? What does the unit of measure seem to be?

Use the same command as in Exploration Project to determine
how sparse some processes’ address spaces are. What fraction of the
range from lowest mapped address to highest mapped address belongs
to any mapping? How many contiguous address ranges are occupied
and how many unoccupied holes are there? Are the holes large enough
that a linear or multilevel page table could plausibly take advantage
of them?
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#include <stdlib.h>

int large_array[10000000] ;

int main(int argc, char *argv[]){
system("ps 1"); /* note: letter 1 */
return large_array[0];

3

Figure 6.20: This C program, own-size.c, shows its own size, including the
size of a large array of zeros, by running the ps command.

6.5

6.6

In Section I estimated the relative price per gigabyte and speed
of disk versus RAM. Look up some prices and specifications on the web
and make your own estimates of these ratios. Explain the assumptions
you make and data you use.

As explained in the text, Linux normally uses a form of clustered
paging, also known as read around. Using the madvise procedure,
you can override this normal behavior for a particular region of vir-
tual memory, marking it as randomly accessed (which turns off all
prepaging) or sequentially accessed (which switches to a variant form
of prepaging). Instead of experimenting with these modes selectively,
as in Programming Project you can experiment with changing
all virtual memory to use one of them, provided you have a system
on which you can build and install Linux kernels. Near the top of
the kernel source file include/linux/mm.h, you will find the defi-
nitions of VM_NormalReadHint (v), VM_SequentialReadHint (v), and
VM_RandomReadHint (v). Change these definitions so that one of them
is defined as 1 and the other two are defined as 0. Now all virtual mem-
ory areas will be treated in accordance with the mode you defined as
1, independent of any uses of madvise. Build the kernel with your
change and conduct an experiment in which you compare the perfor-
mance of some programs running under your variant kernel with their
performance running under a normal kernel. (You may want to build
more than one variant kernel in order to try out more than one of the
modes.) Write a report clearly presenting your results and carefully
explaining what you did, and in which hardware and software system
context you did it, so that someone else could replicate your results.
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(This project was written when the kernel was at version 2.6.11; how-
ever, the relevant aspects of the source code seem to be stable across
quite a few versions.)

6.7 In the end-of-chapter notes, I trace paging back to seminal articles pub-
lished in the early 1960s by the designers of the Atlas computer, and I
also report that this computer was the first to use a small fast memory
and a large slow memory to simulate a large fast memory. However, in
those same notes, I also cite a recent article by Jessen, which brought
to light an unpublished doctoral dissertation by Giintsch from 1956.
This dissertation proposed a similar approach to simulating a large
fast memory. Read these articles and write a comparison of Giintsch’s
work with that of the Atlas team. Beyond the dates, the most obvi-
ous difference is that one was an unpublished proposal for an unbuilt
machine and had no apparent influence, whereas the other resulted in
both an actual machine and publications that were frequently refer-
enced by later writers. However, you should go beyond these surface
issues and compare the substance of the two proposals. Which is more
like today’s virtual memory?

Notes

Tintroduced the virtual memory concept by stressing the distinction between
addresses as names for information and as locations of storage. Fothering-
ham made this point in one of the earliest papers on virtual memory, con-
cerning the pioneering Atlas computer [58]. Dennis made the same point at
greater length a few years later [47]. These two papers from the 1960s were
seminal with regard to paging and segmentation, respectively. (Even be-
fore Dennis’s paper, segmentation was used commercially in the Burroughs
B5000 system [26].) At the end of that decade, Denning wrote an influen-
tial survey of the whole virtual memory field, including both paging and
segmentation [46].

Many of the uses I list for virtual memory can be traced back to the
earliest papers. Most famously, the simulation of a large fast memory by a
small fast memory and a large slow external storage device was first used in
the Atlas computer [58| [88]. (See also Exploration Project with regard
to a related mechanism proposed even earlier by Giintsch, which Jessen has
recently described [84].) In this context, Denning developed the working set
concept [45]. Onme virtual memory application of more modern vintage is
message passing with COW; for a recent example, see Mac OS X [7].
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While discussing applications of virtual memory, I touched on a cou-
ple implementation issues. The compromise approach to dirty bits (and
reference bits) employed in Itanium can be found in reference [83]. A read-
able example of the performance impact of cache bypassing when prezeroing
pages can be found in a paper on Linux for the PowerPC [53].

In introducing the representations of address mappings, I mentioned that
mixing page sizes can be beneficial. One important body of research on
this topic is Talluri’s dissertation [143]. Navarro showed that transparent
support for mixed page sizes is practical [I107]. Linux has moved in this
direction; prior to version 2.6.38, it used larger-than-normal pages only for
specialized purposes, but version 2.6.38’s “transparent huge pages” feature
allows ordinary application processes’ pages to be automatically coalesced
when possible and divided back up when necessary.

Specific information on each of the example systems I mentioned is avail-
able: VAX/VMS [96], Itanium [83], AMDG64 (including IA-32 compatibil-
ity) [3], Multics [15] [42], and Microsoft Windows [123].

Hashed page tables are part of an interesting historical design progres-
sion, starting with the Atlas and continuing on past hashed page tables to
clustered page tables, which have yet to be deployed commercially. The
Atlas [58] [88] used a fully associative inverted page table. That is, it had
an array with one storage location per page frame; element n contained the
page number resident in page frame n. To locate a given page number (for
address translation), special hardware checked all the entries in the inverted
page table in parallel. This hardware does not scale up to large numbers
of page frames. Therefore, the IBM System/38 replaced the parallel search
with a hash table, while still retaining the inverted page table itself [80].
Each entry in the hash table pointed to an entry in the inverted page table.
HP originally adopted this same approach for their Precision Architecture,
but then recognized that the hash table and the inverted page table could be
merged together, forming today’s hashed page table, as described by Huck
and Hays [82]. (Huck and Hays also introduced the notion of software TLB.)

Recall that linear and multilevel page tables store page table entries con-
secutively for a chunk of sequential page numbers (for example, 1024 pages).
These chunks may contain some unused entries, wasting space. Hashed page
tables, on the other hand, store each page table entry individually, so that
no space is wasted on unused entries. However, each entry needs to be sig-
nificantly larger. The optimal balance point for space might be somewhere
between the two extremes. Also, if page table references exhibit spatial
locality, keeping at least a small cluster of consecutive pages’ entries ad-
jacent could speed access. Based on these observations, Talluri, Hill, and
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Khalidi [142] proposed clustered page tables, a variant of hashed page tables
where each entry in the hash table contains page table entries for several
consecutive pages.

Kessler and Hill [87] evaluated page coloring and bin hopping, as well as
other approaches to cache-conscious page placement.

Belady [12] published an early comparison of replacement policies, in-
cluding FIFO, LRU, and a more complex version of OPT he called MIN.
In a separate publication [I3], he and coworkers showed that FIFO was
subject to the anomaly which has come to bear his name; see also refer-
ence [112]. Mattson et al. [101] refined OPT to its modern form, proved
its optimality, introduced the concept of stack algorithms, and proved they
were immune from Belady’s anomaly. Aho, Denning, and Ullman [2] an-
alyzed optimality under probabilistic models; in particular, they showed
that LRU approximates optimal replacement given slowly varying reference
probabilities. Turner and Levy [146] showed how Segmented FIFO page re-
placement can approximate LRU. Their work was in the context of VMS’s
local replacement. A similar replacement policy, again using cheap recla-
mation of recently freed pages as a substitute for reference bits, but this
time global and patterned on clock replacement, was used by Babaoglu and
Joy [9] shortly thereafter.



Chapter 7

Processes and Protection

7.1 Introduction

At this point, having seen both the threads that perform computations and
the virtual memory spaces in which those computations take place, you are
finally prepared to synthesize the notion of process. Processes play a central
role in the view of an operating system as experienced by most system ad-
ministrators, application programmers, and other moderately sophisticated
computer users. In particular, the technical concept of process comes the
closest to the informal idea of a running program.

The concept of process is not entirely standardized across different op-
erating systems. Not only do some systems use a different word (such as
“task”), but also the details of the definition vary. Nonetheless, most main-
stream systems are based on definitions that include the following:

One or more threads Because a process embodies a running program,
often the process will be closely associated with a single thread. How-
ever, some programs are designed to divide work among multiple
threads, even if the program is run only once. (For example, a web
browser might use one thread to download a web page while another
thread continues to respond to the user interface.)

Virtual memory accessible to those threads The word “accessible” im-
plies that some sort of protection scheme ensures that the threads
within a process access only the memory for which that process has
legitimate access rights. As you will see, the mainstream protection
approach is for each process to have its own virtual memory address
space, shared by the threads within that process. However, I will also
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present an alternative, in which all processes share a single address
space, but with varying access rights to individual objects within that
address space. In any case, the access rights are assigned to the pro-
cess, not to the individual threads.

Other access rights A process may also hold the rights to resources other

than memory. For example, it may have the right to update a particu-
lar file on disk or to service requests arriving over a particular network
communication channel. I will address these issues in Chapters [§] and
O For now, I will sketch two general approaches by which a process
can hold access rights. Either the process can hold a specific capability,
such as the capability to write a particular file, or it can hold a general
credential, such as the identification of the user for whom the process
is running. In the latter case, the credential indirectly implies access
rights, by way of a separate mechanism, such as access control lists.

Resource allocation context Limited resources (such as space in mem-

ory or on disk) are generally associated with a process for two reasons.
First, the process’s termination may serve to implicitly release some of
the resources it is holding, so that they may be reallocated. Operating
systems generally handle memory in this way. Second, the process may
be associated with a limited resource quota or with a billing account
for resource consumption charges. For simplicity, I will not comment
on these issues any further.

Miscellaneous context Operating systems often associate other aspects

of a running program’s state with the process. For example, systems
such as Linux and UNIX (conforming to the POSIX standard) keep
track of each process’s current working directory. That is, when any
thread in the process accesses a file by name without explicitly indi-
cating the directory containing the file, the operating system looks for
the file starting from the process’s current working directory. For his-
torical reasons, the operating system tracks a single current working
directory per process, rather than one per thread. Yet this state might
have been better associated with the individual threads, as it is hard
to see why a change-directory operation in one thread should upset
file operations underway in another concurrently running thread. Be-
cause there is no big master narrative to these items of miscellaneous
context, I won’t consider them further in this chapter.

From this list, you can see that many of the key aspects of processes

concern protection, and these are the aspects on which I will focus. Before
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diving into a consideration of various approaches to protection, however, I
will devote Section to the basics of how the POSIX process management
API can be used, such as how a thread running in one process creates
another process and how a process exits. This section should serve to make
the use of processes more concrete. Studying this API will also allow you to
understand how the shell (command interpreter) executes user commands.

After studying the basics of POSIX process management, you will spend
the remaining sections of the chapter learning various aspects of protection.
Keep in mind that protection is a large and diverse area; although I will in-
troduce several different protection mechanisms in this chapter, I will leave
many topics for later chapters. I postpone some protection questions spe-
cific to file systems to Chapter Also, protection is intimately related to
security, which I cover in Chapter In particular, my emphasis here will
be on basic mechanisms. I will defer to Chapter all questions of how
those mechanisms are deployed to enforce chosen security policies.

I will divide this current chapter’s treatment of protection among three
sections. Section addresses the fundamental question of limiting each
process’s access to memory. After showing how processors provide two dis-
tinct execution modes to serve as the foundation for any protection system,
I will present two approaches to memory protection: one with a separate
address space for each process, and one with a single address space. Mov-
ing beyond memory protection, Section [7.4] first presents the fundamentals
of access rights, then examines the two approaches I mentioned for repre-
senting access rights: capabilities and the combination of credentials with
access control lists. The assumption throughout these two sections is that
protection operates at the granularity of processes. Section[7.5]examines two
alternatives, of finer and coarser granularity. The finer-grained protection
approach protects parts of processes from each other. The coarser-grained
approach, on the other hand, protects entire simulated machines from one
another, with each simulated machine running its own operating system.

In Section the chapter concludes with an examination of some of the
security issues most directly raised by material in the earlier sections.

7.2 POSIX Process Management API

All operating systems provide mechanisms for creating new processes, ter-
minating existing processes, and performing related actions. The details
vary from system to system. To provide a concrete example, I will present
relevant features of the POSIX API, which is used by Linux and UNIX,
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including by Mac OS X.

In the POSIX approach, each process is identified by a process ID num-
ber, which is a positive integer. Each process (with one exception) comes
into existence through the forking of a parent process. The exception is the
fir